A Proto Inverse Szemerédi–Trotter Theorem

The HADES seminar on Tuesday, October 4th will be at 3:30 pm in Room 740.

Speaker: Olivine Silier

Abstract: A point-line incidence is a point-line pair such that the point is on the line. The Szemerédi–Trotter theorem says the number of point-line incidences for n (distinct) points and lines in R2 is tightly upperbounded by O(n4/3). We advance the inverse problem: we geometrically characterize `sharp’ examples which saturate the bound using the cell decomposition and crossing lemma proofs of Szemerédi–Trotter. This result is also an important step towards obtaining an ϵ improvement in the unit-distance problem. (Ongoing work with Nets Katz)


No background required, all welcome!

Leave a Reply

Your email address will not be published. Required fields are marked *