Monthly Archives: February 2019

Maciej Zworski (UCB)

The APDE seminar on Monday, 04/08 will be given by Maciej Zworski in Evans 740 from 4:10 to 5pm.

Title:
Rough control for Schr\”odinger operators on 2-tori.

Abstract: I will explain how the results of Bourgain, Burq and the speaker ’13 can be used to obtain control and observability by rough functions and sets on 2-tori. We show that for the time dependent Schr\”odinger equation, any set of positive measure can be used for observability and controllability. For non-empty open sets this follows from the results of Haraux ’89 and Jaffard ’90, while for sufficiently long times and rational tori this can be deduced from the results of Jakobson ’97. Other than tori (of any dimension; cf. Komornik ’91, Anantharaman–Macia ’14) the only compact manifolds for which observability holds for any non-empty open sets are hyperbolic surfaces. That follows from results of Bourgain–Dyatlov ’16 and Dyatlov–Jin ’17 and I will discuss the difficulty of passing to rougher rougher sets in that case. Joint work with N Burq.

Jean-Michel Coron (UPMC)

The next APDE seminar will be given on Monday, 02/11 by Jean-Michel Coron in Evans 740 from 4:10 to 5pm.

Title:
Some methods to use the nonlinearities in order to control a system

Abstract:
A control system is a dynamical system on which one can act thanks to what is called the control. For example, in a car, one can turn the steering wheel, press the accelerator pedal etc. These are the control(s). One of the main problems in control theory is the controllability problem. One starts from a given situation and there is a given target. The controllability problem is to see if, by using some suitable controls depending on time, one can move from the given situation to the desired target. We study this problem with a special emphasis on the case where the nonlinearities play a crucial role. We first recall some classical results on this problem for finite dimensional control systems. We explain why the main tool used for this problem in finite dimension, namely the iterated Lie brackets, is difficult to use for many important control systems modeled by partial differential equations. We present methods to avoid the use of these iterated Lie brackets. We give applications of these methods to various physical control systems (Euler and Navier-Stokes equations of incompressible fluids, shallow water equations, Korteweg-de Vries equations).