SAMPLE MATH 55 MIDTERM 1, SPRING 2014

(1) Mark each of the following questions true (T) or false (F). Provide a sentence or two justifying each answer.

(a) If \(x \equiv y \pmod{m} \) then \(ax \equiv ay \pmod{m} \).

(b) If \(ax \equiv ay \pmod{m} \) then \(x \equiv y \pmod{m} \).

(c) The function \(f : \mathbb{Z} \to \mathbb{Z} \) defined by \(f(x) = \lfloor \frac{x}{2} \rfloor \) is surjective.

(d) \(f(S \cap T) = f(S) \cap f(T) \).

(e) The positive real numbers are countable.

(f) Let \(\mathbb{R} \) be the domain, and let \(P(x, y) \) be the statement \(y^2 = x \). Determine the truth value of the following statement: \(\forall x \exists y P(x, y) \).
(2) Prove that if m is a positive integer of the form $4k + 3$ for some non-negative integer k, then m is not the sum of the squares of two integers.
(3) Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
(4) Computation.
 - Write the number 466 in base 9.

 - Does an inverse of 8 (mod 75) exist? If so, find one.

 - Calculate $6^{666} \mod 23$.
(5) Prove that if \(p \) is prime, the only solutions of \(x^2 \equiv 1 \pmod{p} \) are integers \(x \) such that \(x \equiv 1 \pmod{p} \) or \(x \equiv -1 \pmod{p} \).
(6) Find all solutions to the system of congruences $x \equiv 2 \pmod{3}$, $x \equiv 1 \pmod{4}$, and $x \equiv 3 \pmod{5}$.