MATH 142 MIDTERM 2 SOLUTION

1. (10 points) Determine whether the following statements are true or false, no justification is required.

 (1) A path-connected component of a topological space may not be a closed subset.

 True

 (2) The identification space of a Hausdorff space is still Hausdorff.

 False

 (3) Let X be a topological space and p, q be two points in X, then $\pi_1(X, p)$ is isomorphic to $\pi_1(X, q)$.

 False

 (4) Let X, Y be two path-connected topological spaces with isomorphic fundamental groups, then X and Y are homeomorphic to each other.

 False

 (5) Any contractible topological space is connected.

 True
2. (30 points) Let $f : X \to Y$ be an identification map. Suppose that Y is connected, and for each $y \in Y$, $f^{-1}(y) \subseteq X$ is a connected subspace of X. Show that X is a connected space.

Proof. Suppose that $X = U \cup V$ with $U \cap V = \emptyset$, both U and V are open.

For each $y \in Y$, $f^{-1}(y)$ is not empty (f is an onto map). We have $f^{-1}(y) = (f^{-1}(y) \cap U) \cup (f^{-1}(y) \cap V)$ with both $f^{-1}(y) \cap U$ and $f^{-1}(y) \cap V$ are open sets in $f^{-1}(y)$ (under subspace topology), and $(f^{-1}(y) \cap U) \cap (f^{-1}(y) \cap V) = \emptyset$. Since $f^{-1}(y)$ is connected, we have that either $f^{-1}(y) \subseteq U$ or $f^{-1}(y) \subseteq V$ holds and only one of them happens.

Define two subsets U' and V' of Y by $U' = \{ y \in Y \mid f^{-1}(y) \subseteq U \}$ and $V' = \{ y \in Y \mid f^{-1}(y) \subseteq V \}$. Since for any $y \in Y$, either $f^{-1}(y) \subseteq U$ or $f^{-1}(y) \subseteq V$ and only one of them happens, we have $U' \cup V' = Y$ and $U' \cap V' = \emptyset$. Moreover, since $U = f^{-1}(U')$ and $V = f^{-1}(V')$, U, V are open subsets of X and $f : X \to Y$ is an identification map, U' and V' are open sets in Y.

Since Y is connected, we have that either U' or V' is empty. Since f is onto, $U = f^{-1}(U')$ and $V = f^{-1}(V')$, we have that either U or V is empty. So X is connected. □
3. (30 points) Let G be a path-connected topological group and X be a path-connected topological space, with G acts on X (as a group of homeomorphisms). For each $x \in X$, we can define a continuous function $i_x : G \to X$, with $i_x(g) = g(x)$ for any $g \in G$.

Show that the kernel of $(i_x)_* : \pi_1(G, e) \to \pi_1(X, x)$ is independent of $x \in X$ (i.e. ker $(i_x)_* = \text{ker } (i_y)_*$ for any $x, y \in X$).

Proof. For $\langle \alpha \rangle \in \pi_1(G, e)$, if it lies in the kernel of $(i_x)_* : \pi_1(G, e) \to \pi_1(X, x)$, then the path $i_x \circ \alpha : I \to X$ defined by $i_x \circ \alpha(s) = \alpha(s)(x)$ satisfies $(i_x \circ \alpha) = e \in \pi_1(X, x)$.

Since X is path connected, there exists a path $\gamma : I \to X$ with $\gamma(0) = x$ and $\gamma(1) = y$. Then $\gamma_* : \pi_1(X, x) \to \pi_1(X, y)$ defined by $\gamma_*([\beta]) = \langle \gamma^{-1} \cdot \beta \cdot \gamma \rangle$ for any $[\beta] \in \pi_1(X, x)$ is an isomorphism. Since $\langle i_x \circ \alpha \rangle = e \in \pi_1(X, x)$, we have that $e = \gamma_*\alpha = \gamma_*([i_x \circ \alpha]) = \langle \gamma^{-1} \cdot i_x \circ \alpha \cdot \gamma \rangle \in \pi_1(X, y)$.

To show that $\langle \alpha \rangle$ lies in the kernel of $(i_y)_* : \pi_1(G, e) \to \pi_1(X, y)$, we need only to show that $i_y \circ \alpha$ is homotopic to $\gamma^{-1} \cdot i_x \circ \alpha \cdot \gamma$ relative to $\{0, 1\}$. The homotopy $F : I \times I \to X$ from $i_y \circ \alpha$ to $\gamma^{-1} \cdot i_x \circ \alpha \cdot \gamma$ is defined by

$$F(s, t) = \begin{cases}
\gamma(1 - 3s) & s \in [0, \frac{4}{7}] \\
\alpha(\frac{3s - 1}{2 - 2t})(\gamma(1 - t)) & s \in [\frac{4}{7}, 1 - \frac{4}{7}]
\gamma(3s - 2) & s \in [1 - \frac{4}{7}, 1].
\end{cases}$$

Then $F_0(s) = \alpha(s)(\gamma(1)) = \alpha(s)(y) = i_y \circ \alpha(s)$, and

$$F_1(s) = \begin{cases}
\gamma(1 - 3s) & s \in [0, \frac{1}{7}]
\alpha(3s - 1)(x) & s \in [\frac{1}{7}, \frac{2}{7}] = (\gamma^{-1} \cdot i_x \circ \alpha \cdot \gamma)(s).
\gamma(3s - 2) & s \in [\frac{2}{7}, 1].
\end{cases}$$

So we have that for any element lies in the kernel of $(i_x)_*$, it lies in the kernel of $(i_y)_*$. By switching x and y, we get that any element lies in the kernel of $(i_y)_*$ also lies in the kernel of $(i_x)_*$. So the kernel does not depend on the base point x. □
4. (30 points) For a continuous function \(f : S^1 \to S^1 \), show that either there exists \(e^{i\theta} \in S^1 \) such that \(f(e^{i\theta}) = -e^{i\theta} \), or there exists \(e^{i\phi} \in S^1 \) such that \(f(e^{i\phi}) = -e^{-i\phi} \).

(Hint: If \(f(e^{i\theta}) \neq -e^{i\theta} \) and \(f(e^{i\phi}) \neq -e^{-i\phi} \) for any \(e^{i\theta} \in S^1 \), show that \(f \) is homotopic to both \(e^{i\theta} \to e^{i\theta} \) and \(e^{i\phi} \to e^{-i\phi} \), then try to get a contradiction.)

Proof. Suppose that \(f(e^{i\theta}) \neq -e^{i\theta} \) and \(f(e^{i\phi}) \neq -e^{-i\phi} \) for any \(e^{i\theta} \in S^1 \), we can construct two homotopies \(F_1, F_2 : S^1 \times I \to S^1 \) by

\[
F_1(e^{i\theta}, t) = \frac{(1 - t)f(e^{i\theta}) + te^{i\theta}}{||(1 - t)f(e^{i\theta}) + te^{i\theta}||}
\]

and

\[
F_2(e^{i\phi}, t) = \frac{(1 - t)f(e^{i\phi}) + te^{-i\phi}}{||(1 - t)f(e^{i\phi}) + te^{-i\phi}||}.
\]

Then \(F_1 \) gives a homotopy from \(f \) to \(e^{i\theta} \to e^{i\theta} \) and \(F_2 \) gives a homotopy from \(f \) to \(e^{i\phi} \to e^{-i\phi} \). Since homotopy is an equivalence relation, we have that \(f_1 : S^1 \to S^1 \) defined by \(f_1(e^{i\theta}) = e^{i\theta} \) and \(f_2 : S^1 \to S^1 \) defined by \(f_2(e^{i\phi}) = e^{-i\phi} \) are homotopic to each other by a homotopy \(G : S^1 \times I \to S^1 \).

Then \((f_2)_* : \pi_1(S^1, 1) \to \pi_1(S^1, 1) \) is conjugate to \((f_1)_* : \pi_1(S^1, 1) \to \pi_1(S^1, 1) \) by the path \(\alpha : I \to S^1 \) defined by \(\alpha(t) = G(1, t) \), i.e. \((f_2)_* = \alpha_* \circ (f_1)_* \). Note that the path \(\gamma : I \to S^1 \) defined by \(\gamma(t) = e^{i2\pi t} \) generates \(\pi_1(S^1, 1) \cong \mathbb{Z} \). Since \(f_1 \circ \gamma = \gamma \) and \(f_2 \circ \gamma = \gamma^{-1} \), the corresponding induced maps on fundamental groups satisfy that \((f_1)_*(\langle \gamma \rangle) = \langle \gamma \rangle \) and \((f_2)_*(\langle \gamma \rangle) = \langle \gamma^{-1} \rangle \).

Since \(\pi_1(S^1, 1) \cong \mathbb{Z} \) is abelian, we have \(\langle \alpha^{-1} \rangle \cdot \langle \gamma \rangle \cdot \langle \alpha \rangle = \langle \gamma \rangle \). So \(\langle \gamma^{-1} \rangle = (f_2)_*(\langle \gamma \rangle) = \alpha_*((f_1)_*(\langle \gamma \rangle)) = \alpha_* (\langle \gamma \rangle) = \langle \alpha^{-1} \rangle \cdot \langle \gamma \rangle \cdot \langle \alpha \rangle = \langle \gamma \rangle \). It implies that \(1 = -1 \) in the group \(\mathbb{Z} \), which is a contradiction.

So either there exists \(e^{i\theta} \in S^1 \) such that \(f(e^{i\theta}) = -e^{i\theta} \), or there exists \(e^{i\phi} \in S^1 \) such that \(f(e^{i\phi}) = -e^{-i\phi} \).