Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in complete sentences. Take pain to explain what you are doing since your exam book is your only representative when you work is being graded.

1. (6 points) Suppose that \(a \in \mathbb{Z}/37\mathbb{Z} \) is such that the values of \(a^2, a^4, a^8, a^{16} \) and \(a^{32} \) are respectively 11, 10, 26, 10 and 26. Compute \(a^{36058} \). Find the number of elements \(b \) in \(\mathbb{Z}/37\mathbb{Z} \) that satisfy \(b^{32} = a^{32} \).

Because \(a^4 = a^{16} \), we know that \(a^{12} = 1 \). Hence \(a^{36058} = a^{10} = a^2a^8 = 11 \cdot 26 = 27 \). In the second question, the \(b \)s correspond to \(c \)s for which \(c^{32} = 1 \). To say that \(c^{32} = 1 \) is to say that \(c^4 = 1 \), since \(c^{36} = 1 \) by Fermat’s Little Theorem. Let \(g \) be a generator, and write \(c = g^i \) where \(i \) is an integer mod 36. The condition \(c^4 = 1 \) means that \(4i \equiv 0 \) mod 36, i.e., that \(i \) is divisible by 9. The possible values of \(i \) mod 36 are then 0, 9, 18 and 27. There are four such values. For what it’s worth, the possible values of \(b \) are 10, 14, 23 and 27 mod 37. Note: Many people ignored the second question in the problem. Is this because it was a stealth question somehow or because it was hard?

2. (5 points) Consider the following sage transcript:

```
sage: p=1259
sage: g=Mod(1028,p)
sage: h=g^1238
sage: log(h,g)
609
```

Why is sage telling us that \(\log(h, g) \) is 609, rather than 1238?

The log in question is the smallest power of \(g \) that’s equal to \(h \). Since \(g^{609} = g^{1238} \), we can infer that \(g^{629} = 1 \). The order of \(g \) must be equal to 629 because otherwise it would be a proper divisor of 629 and then would certainly be less than 609. The only significant thing going on here is that \(g \) is not a generator (even though ‘g’ suggests ‘generator’). Since \(h \) is a power of \(g \), the discrete log is well defined, and 609 is its value.

3. (5 points) Using the equation \(1 = 1634152 \cdot 358703966558 - 1162438012471 \cdot 504265 \), find an integer \(x \) satisfying

\[
x \equiv \begin{cases}
99 & \text{mod } 1634152 \\
123 & \text{mod } 1162438012471.
\end{cases}
\]

You do not need to simplify your answer.

Answer: \(-99 \cdot 1162438012471 \cdot 504265 + 213 \cdot 1634152 \cdot 358703966558 \). The value of this unpleasant expression is 14068243304608531683.
4. Let \(p \) be the prime 10007 and let \(g \) be the primitive root 5 mod \(p \). Imagine that we will be using the baby-step giant-step algorithm to find the discrete logarithm of a number \(h \in \mathbb{Z}/p\mathbb{Z} \) with respect to \(g \): we will compare baby steps 1, \(g, g^2, \ldots \) (the first list) with ratios \(h, hg^{-n}, hg^{-2n}, \ldots \) (the second list). If we follow the procedure that was outlined in class, what value \(n \) will we choose and how long will each of the lists be? In the case \(h = g^{456} \), for which \(i \) will \(g^i \) occur on both lists?

The value of \(n \) is \(\lfloor \sqrt{p-1} \rfloor + 1 = 101 \); note that the square root of \(p-1 \) is smaller than 101 because \(101^2 = 10201 \). When \(h = g^{456} \), we divide 456 by \(n = 101 \), getting the quotient 4 and the remainder 52. This means that 456 = 4n + 52, so that \(h = g^{4n+52} = g^{4n}g^{52} \). Thus \(h = g^{4n} = g^{52} \), which is on the first list, also occurs as \(h = g^{4n} \) on the second list.

5. Let \(F \) be the field \(\mathbb{F}_3[x]/(x^2 - x - 1) \). How many elements are in \(F \)? Let

\[
a = x \mod (x^2 - x - 1)
\]

be the image of \(x \) in \(F \). Show that \(a^4 = -1 \) and also that \(a \) is a primitive root in \(F \) (i.e., a generator of the multiplicative group \(F^* \)).

There are 9 elements in \(F \); in general, there are \(p^n \) elements if we start with \(\mathbb{F}_p \) and use an irreducible polynomial of degree \(n \). (We know that \(x^2 - x - 1 \) is irreducible in this case because we are told that the quotient ring \(\mathbb{F}_3[x]/(x^2 - x - 1) \) is a field.) In \(F \), we have \(a^2 = a + 1 \), so that \(a^4 = (a + 1)^2 = a^2 - a + 1 \). (Note that 2 = -1.) Thus \(a^4 = (a + 1) - a + 1 = 2 = -1 \), as required. The order of \(a \) is now clearly 8 because \(a^8 = 1 \) and \(a^4 \neq 1 \). Thus \(a \) is a multiplicative generator (i.e., a primitive root).

6. In the ring \(\mathbb{F}_2[z] \) of polynomials over the field with two elements, let \(f = z^4 + z^3 + z + 1 \) and \(g = z^4 + 1 \). Use the extended Euclidean algorithm to find the gcd \(d \) of \(f \) and \(g \) and to write \(d \) in the form \(af + bg \) with \(a, b \in \mathbb{F}_2[z] \).

We have

\[
f = g + z^3 + z
\]

\[
g = z \cdot (z^3 + z) + (z^2 + 1)
\]

\[
z^3 + z = z(z^2 + 1).
\]

Hence the gcd of the two polynomials is \(z^2 + 1 \). Further,

\[
z^2 + 1 = g + z(z^3 + z) = g + z(f + g) = (z + 1)g + zf.
\]

Note, by the way that \(g = (z+1)^4 \) and that \(z^2 + 1 = (z+1)^2 \). Also, \(f = (z+1)^4 + z(z+1)^2 \).