1. a. Find the greatest common divisor of 255 and 297. Write this gcd as an integral linear combination \(t \cdot 255 + u \cdot 297 \).

The gcd is \(3 = 7 \cdot 255 - 6 \cdot 297 \).

b. For which pairs of integers \((a, b)\) is it possible to find an integer \(x \) such that

\[
\begin{align*}
 x &\equiv a \mod 255, \\
 x &\equiv b \mod 297?
\end{align*}
\]

For example, can we find an \(x \) when \(a = 4, b = 11 \)?

If \(x \) satisfies the two congruences, then 3 divides \(x - a \) and also \(x - b \), since 3 divides both 255 and 297. Hence 3 divides \(a - b \), which means that we have \(a \equiv b \mod 3 \). In particular, there can be no \(x \) when \(a = 4 \) and \(b = 11 \).

Conversely, suppose that \(a \equiv b \mod 3 \). Then we can find an \(x \) that satisfies the two congruences, namely

\[
x = a + (7 \cdot 255) \frac{b-a}{3} \mod 255.
\]

To see that this works, we can note that \(x \) is visibly of the form \(a + a \) multiple of 255, so that \(x \) is \(a \mod 255 \). Further, \(7 \cdot 255 \equiv 3 \mod 297 \). Hence mod 297 we clearly have \(x \equiv a + (b-a) = b \).

2. Let \(p \) be the prime number 103; note that \(p - 1 \) factors as \(2 \cdot 3 \cdot 17 \). What numbers occur as orders of elements of the group \(\mathbb{F}_p^\times \)? How many elements of \(\mathbb{F}_p^\times \) are there of each order?

The possible orders are the positive divisors of \(p - 1 \), namely: 1, 2, 3, 17, 2 \cdot 3, 2 \cdot 17, 3 \cdot 17 and \(p - 1 \). For each divisor \(d \) of \(p - 1 \), the number of elements of order \(d \) is \(\varphi(d) \), where \(\varphi \) is the Euler phi function. These \(\varphi \)-values are respectively 1, 1, 2, 16, 2, 16, 32 and 32. The sum of these eight numbers is 102 = \(p - 1 \), as we'd expect. (Each element has exactly one order!)
3. a. Find a square root of 19 mod 103. (No need to simplify your answer.)

Since \(p = 103 \) is 3 mod 4, a square root is \(19^{(p+1)/4} = 19^{26} \). I am told that the value of this expression is 15 mod \(p \). This makes sense because \(15^2 = 225 \) is \(19 + 206 = 19 + 2 \cdot 103 \).

b. How many elements of \((\mathbb{Z}/255\mathbb{Z})^*\) have square equal to 1? List three of these elements.

We saw above that 255 is divisible by 3, and it’s clearly divisible by 5. It’s \(3 \cdot 5 \cdot 17 \). Because 255 is the product of three distinct odd primes, there are \(2^3 = 8 \) square roots of 1 mod 255. Of course, 1 and \(-1\) are square roots of 1 mod 255. To get a third square root of 1, we need to exhibit an “exotic” square root of 1. One way to do this is to look for a number that’s 1 mod \(5 \cdot 17 = 85 \) and \(-1\) mod 3. We don’t have to look very far: 86 does the trick. You can check that \(86^2 - 1 \) is divisible by 255; it’s \(255 \cdot 29 \), in fact.

4. Suppose that someone furnishes you with a table of the values of \(5^{2^i} \mod 144169 \) for \(i = 0, \ldots, 10 \). How would you compute \(5^{821} \mod 144169 \) in terms of those values? (Write an explicit formula.) If you write 821 as a sum of powers of 2, then \(5^{821} \) gets written as a product of terms of the form \(5^{2^i} \). (Thinking in this way leads you to the “fast-powering algorithm.”) The binary expansion of 821 is \(1100110101_2 \), which means that \(821 = 512 + 256 + 32 + 16 + 4 + 1 \ldots \).

5. Bob and Alice agree to communicate with each other using a Diffie–Hellman key exchange. They select the prime number \(p = 1237 \) and the generator \(g = 2 \). Bob chooses his secret integer \(b \) and receives from Alice the value \(A \).

a. What number should Bob send to Alice? (Write a formula — don’t try to compute an explicit value.)

Bob sends Alice the value \(B = 2^b \).

b. What computation does Bob perform to obtain the secret value that he and Alice will share?

He computes \(A^b = 2^{ab} \), where \(a \) is Alice’s secret value. Alice obtains the same number by computing \(B^a \). Too bad for Eve.