1 (5 points). Suppose that \(n \) and \(m \) are positive integers, that \(p \) is a prime and that \(\alpha \) is a non-negative integer. Assume that \(n \) is divisible by \(p^\alpha \), that \(m \) is prime to \(p \) and that \(F = \frac{n}{m} \) is an integer. Show that \(F \) is divisible by \(p^\alpha \).

This is an abstraction of the situation of problem #14 on page 63, where some students had trouble exploiting the hint. The integer \(Fm \) is divisible by \(p^\alpha \), and \(m \) is prime to \(p \). This means that \(\gcd(m, p^\alpha) = 1 \). Since \(p^\alpha | nF \) and \(\gcd(m, p^\alpha) = 1 \), we may conclude that \(p^\alpha \) divides \(F \) by Th. 1.10 on p. 10.

2 (6 points). Let \(f(x) \) be a polynomial with integer coefficients that satisfies \(f(1) = f'(1) = 3 \). Calculate the remainder when \(f(-18) \) is divided by \(19^2 \).

By Taylor’s theorem, \(f(-18) = f(1 - 19) = f(1) - f'(1) \cdot 19 + \text{terms that are divisible by } 19^2 \). Hence the answer is \(-3 \cdot 18 = -54 \mod 85\); we should say “\(19^2 - 54 = 307 \)” because we want the answer to be positive here.

3 (5 points). Determine the number of solutions to the congruence \(x^2 + x + 1 \equiv 0 \mod 7^{11} \).

Modulo 7, there are the two solutions 2 and 4. These are both non-singular, since \(2x + 1 \) is non-zero mod 7 when \(x = 2 \) and \(x = 4 \). Hensel’s lemma implies that each solution lifts uniquely mod \(7^n \) for \(n = 1, 2, \ldots \). Thus the answer is “two”.
4 (6 points). Find an integer \(n \geq 1 \) so that \(a^{3n} \equiv a \mod 85 \) for all integers \(a \) that are divisible neither by 5 nor by 17.

This is an RSA-related problem, although RSA is not mentioned explicitly. By Euler’s theorem, it suffices to find an inverse to 3 \mod \varphi(85) = 64. Since \(3 \cdot 43 = 129 \equiv 1 \mod 64 \), we can take \(n = 43 \). Actually, as several of you noted, one can take \(n = 11 \) instead; if you didn’t give “11” as your answer, you should check why this number works.

5 (6 points). Find the number of solutions mod 120 to the system of congruences:

\[
\begin{align*}
x &\equiv 2 \mod 4 \\
x &\equiv 3 \mod 5 \\
x &\equiv 4 \mod 6
\end{align*}
\]

The gcd of 4 and 6 is 12. Hence the first and third congruences determine \(x \) uniquely mod 12 if they are consistent. Since 2 and 4 have the same residue mod 2 = \gcd(4, 6), the two congruences are indeed consistent. They amount to the statement that \(x \) is 10 mod 12. Thus congruence, plus the second, gives a single congruence that \(x \) must satisfy mod 60; in fact, \(x \) has to be \(-2 \equiv 58 \mod 60\). Conclusion: there are two solutions mod 120, namely 58 and 118.

6 (7 points). If \(m = 15709 \), we have \(2^{(m-1)/2} \equiv 1 \mod m \) and \(2^{(m-1)/4} \equiv 2048 \mod m \). With the aid of these congruences, one can find quite easily a positive divisor of \(m \) that is neither 1 nor \(m \). Explain concisely: how to find such a divisor, and why your method works.

This is basically problem 9 on page 82, where we have \(x^2 \equiv 1 \mod m \) but \(x \not\equiv \pm 1 \mod m \). In this situation, we can’t have \(\gcd(1 + x, m) = 1 \). If this gcd were 1, we could exploit the divisibility \(m|((1 + x)(1 - x)) \) and conclude that \(m \) divides \((1 - x)\) by the theorem on p. 10 that was mentioned above. Since \(x \not\equiv 1 \mod m \), however, \(m \) does not divide \(x - 1 \). Also, \(\gcd(1 + x, m) \) is different from \(m \) because \(x \) is not \(-1 \mod m \). Thus \(\gcd(1 + x, m) \) is a non-trivial divisor of \(m \), i.e., a positive divisor that is different from 1 and \(m \). We’ve found a factor of \(m \)! The wording of the question does logically allow answers that have nothing to do with this method or with the given congruences; for example, you could suggest dividing \(m \) by all the numbers from 1 to \(\lfloor \sqrt{m} \rfloor \). I hope that no one gives an answer like this!

115 midterm—page2