Math 115
First Midterm Exam
September 23, 1999

Professor K. A. Ribet

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a “correct answer” that is not explained fully.

1 (4 points). Find the remainder when 2^{33} is divided by 31.

By Fermat’s Little Theorem, $2^{31} \equiv 2 \mod 31$. Thus $2^{33} \equiv 8 \mod 31$.

2 (4 points). Use the identity $27^2 - 8 \cdot 91 = 1$ to find an integer x such that $27x \equiv 14 \mod 91$.

The identity shows that $27^2 \equiv 1 \mod 91$. Hence $27^2 \cdot 14 \equiv 14 \mod 91$. We can take x to be $378 = 27 \cdot 14$ or any integer equivalent to $27 \cdot 14$ mod 91. In fact, you can check that 14 is the smallest positive integer that is congruent mod 91 to 378. This means that we have $27 \cdot 14 \equiv 14 \mod 91$, so that $26 \cdot 14 \equiv 0 \mod 91$. This may seem strange until one notes that $91 = 7 \times 13$. Hence 26×14 is indeed a multiple of 91.

3 (4 points). Find all prime numbers p such that $p^2 + 2$ is prime.

Maybe this is a silly question; I got it out of a book. If you try the first few primes, you see that $2^2 + 2 = 6$ isn’t prime, that $3^2 + 2 = 11$ is prime, and that $5^2 + 2 = 27$ isn’t prime. Trying a few more, you get the idea that $p^2 + 2$ is divisible by 3 for $p > 3$. This is clearly a true statement because any $p > 3$ is $\equiv \pm 1 \mod 3$, so that its square is $\equiv 1 \mod 3$. Thus $p^2 + 2$ must be of the form $3n + 1$ for some integer n, and so it can only be 1 or 17. A similar statement

4 (5 points). Suppose that $ax + by = 17$, where a, b, x and y are integers. Show that the numbers $\gcd(a, b)$ and $\gcd(x, y)$ are divisors of 17. Decide which, if any, of the following four possibilities can occur:

- (i) $\gcd(a, b) = \gcd(x, y) = 1$
- (ii) $\gcd(a, b) = 17$ and $\gcd(x, y) = 1$
- (iii) $\gcd(a, b) = 1$ and $\gcd(x, y) = 17$
- (iv) $\gcd(a, b) = \gcd(x, y) = 17$

If d is a divisor of a and b, then d divides ax and by, so it divides their sum, which is 17. Thus all divisors of a and b are divisors of 17; this applies, in particular, to the \gcd of a and b. The \gcd can only be 1 or 17, then. A similar statement
applies to the pair \((x, y)\). Clearly, if 17 divides all of \(a, b, x, y\), then \(17^2\) divides \(ax + by\); this is impossible because \(ax + by = 17\) is not divisible by \(17^2\). Thus (iv) cannot occur. The other possibilities do, in fact, occur, however: If \(x = y = 1, a = 16\) and \(b = 1\), then we’re in situation (i). If \(x = y = 1, a = 17\) and \(b = 0\), we’re in situation (ii). Situation (iii) is the same as (ii) with the two pairs \((a, b)\) and \((x, y)\) reversed.

5 (6 points). Suppose that \(n\) is composite: an integer greater than 1 that is not prime. Show that \((n - 1)!\) and \(n\) are not relatively prime. Prove that the congruence
\[(n - 1)! \equiv -1 \pmod{n}\]
is false.

If \(n\) is composite, it has a divisor \(d\) that is bigger than 1 and less than \(n\). The number \(d\) is a factor of \((n-1)!\) because it’s one of the numbers between 1 and \(n-1\). Thus \(n\) and \((n-1)!\) have a non-trivial common factor and therefore they are not relatively prime. The Wilson-type congruence is false because two numbers that are congruent mod \(n\) must have the same gcd with \(n\). The number \(-1\) has gcd 1 with \(n\), whereas \((n-1)!\) has a bigger gcd with \(n\). The point of this problem is to show that there’s a converse to Wilson’s theorem; \(n\) is therefore prime if and only if \((n-1)!\) is \(-1\) mod \(n\).

6 (6 points). Prove that \(-1\) is not a square modulo the prime \(p\) if \(p \equiv 3 \pmod{4}\).

This was covered in class and is explained in our textbook (p. 54).

7 (6 points). Show that \(x^8 \equiv 1 \pmod{20}\) if \(x\) is an integer that is prime to 20. Find the integer \(t\) such that \(t^9 = 760231058654565217 \approx 7.60231 \times 10^{17}\).

Well, I did promise to give you a problem like this! Euler’s theorem states that \(x^{\varphi(n)} \equiv 1 \pmod{n}\) for all \(x\) prime to \(n\). You can check quickly that \(\varphi(20) = 8\): if you look at the numbers between 0 and 19 and take away those that are even or are divisible by 5, you have only eight of them that are left (namely: 1, 3, 7, 9, 11, 13, 17 and 19). Thus we do indeed have \(x^8 \equiv 1\) mod 20 for \(x\) prime to 20. Now if \(t^9 = 760231058654565217\), then clearly \(t\) must be odd and prime to 5. Thus \(t^8 \equiv 1\) and \(t^9 \equiv t\) mod 20. We visibly have \(t^9 \equiv 17\) mod 20, so \(t \equiv 17\) mod 20 as well. Next, note that \(t\) is less than \(100 = 10^2\), since \(t^9 < 10^{18}\). Thus the only possible values of \(t\) are 17, 37, 57, 77, and 97. In fact, \(t = 97\). To see this, we can note that \(80^9 \approx 1.34218 \times 10^{17}\) is a lot smaller than \(t^9\); for this, you have to think about \(8^9\), which is \(1024 \times 1024 \times 128\). Alternatively, you can rule out 77 by noting that \(t^9\) is not divisible by 11 (alternate sum of digits rule) and rule out 57 by noting that \(t^9\) is not divisible by 3 (sum of digits rule). Once you do this, you can rule out 17 and 37 by checking that \(40^9\) is a lot less than \(10^{17}\).