1. Find the number of conjugates of $(123)(456)$ in A_6. (For this problem, and the ones below, be sure to explain your work in complete English sentences.)

In S_6, the conjugates of $\sigma = (123)(456)$ are precisely the permutations that have the same cycle type as σ. To make such a permutation, you lay down the six numbers $1 \to 6$ in some order. There are $6!$ ways to do this, but: each 3-cycle can be written in three ways, and the order of the two 3-cycles doesn’t matter. Accordingly, there are $6!/(3 \cdot 3 \cdot 2) = 40$ such permutations. Still in S_6, the centralizer of σ thus has 18 elements. Among them is the permutation that swaps 1 with 4, 2 with 5 and 3 with 6. This permutation is $(14)(25)(36)$; it’s odd. Thus the situation is like many that we discussed in class. Namely, when we pass to A_6, the group order gets halved but so does the centralizer. Accordingly, σ has the same number of conjugates in A_6 as it does in S_6. Thus the answer is “40.”

2. Let p be an odd prime, and let G be a dihedral group D_{2n}. Show that all p-Sylow subgroups of G are cyclic. Find the number of such subgroups.

There is a unique p-Sylow (which is therefore normal): it’s the p-part of the cyclic group generated by r, which has order n. Specifically, write n as $p^i t$, where t is prime to p. Then the p-Sylow is the cyclic group generated by r^t, which has order p^t. [Note: if $i = 0$, one shouldn’t technically speak of the p-Sylow subgroup of G because p-Sylows are supposed to be non-trivial. If you say that the number of p-Sylows is 0 in the case where p doesn’t divide n, you’ll get full credit and some extra respect.]

3. Suppose that G is a finite group and that H is a subgroup of G. Let $N = N_G(H)$ be the normalizer of H.

 a. Let $H_1 = H, H_2, H_3, \ldots, H_k$ be the distinct conjugates of H in G. Prove the formula

 \[\sum_{i=1}^{k} |H_i| = |H| \cdot (G : N) = |G|/(N : H). \]

 All the conjugates have the same number of elements, so the sum is $k \cdot |H|$. How do we know that $k = (G : N)$? It’s a special case of the general rule that the orbit of $x \in X$
is \(G/G_x \) when \(G \) acts on a set \(X \) and \(G_x \) is the stabilizer of an element \(x \) of \(X \). Here, \(X \) is the set of conjugates of \(H \), and the orbit of \(H \) consists of the entire set (by definition). Now \((G:H) = (G:N)(N:H)\) (e.g., because all three indices can be written as fractions in a way that makes this formula obvious). Writing \((G:H) = |G|/|H|\), we get the equality of the middle expression and the expression on the right.

The takeaway here is that the sum on the left is \(\leq |G| \) because the denominator \((N:H)\) is a positive integer.

b. If \(H \neq G \), show that \(\bigcup_{i=1}^{k} H_i \neq G \).

The sum of the sizes of the sets on the left is at most the size of \(G \). Hence the union on the left can be all of \(G \) only if the union is disjoint. But the union isn’t disjoint because 1 (the identity of \(G \)) is in all the groups \(H_i \) and because there are at least two groups \(H_i \) (in view of the assumption that \(H \) isn’t all of \(G \)).

4. Let \(G \) be a group (possibly infinite) and let \(H \) be a subgroup of \(G \) for which the set \(G/H \) is finite. Use the action of \(G \) by left multiplication on \(G/H \) to show that there is a normal subgroup \(N \) of \(G \) such that \(N \subseteq H \) and such that \(G/N \) is a finite group.

The indicated action gives you a homomorphism

\[\varphi : G \rightarrow S_{G/H}. \]

Let \(N \) be the kernel of \(\varphi \). We have \(N \subseteq H \) because \(N \) is the group of elements of \(G \) that fix all elements of \(G/H \), while \(H \) is the group of elements that fix the coset \(H = 1 \cdot H \) in the set \(G/H \). By the first isomorphism theorem, we have an injection \(G/N \hookrightarrow S_{G/H} \). Since \(G/H \) is a finite set, the symmetric group \(S_{G/H} \) is finite. Thus \(G/N \) is a finite group.

5. Let \(G \) be a group.

a. For each \(g \in G \), let \(\sigma_g \) be the inner automorphism “conjugation by \(g \).” Suppose that \(\varphi \) is an automorphism of \(G \). Establish the formula \(\varphi \sigma_g \varphi^{-1} = \sigma_{\varphi(g)} \).

Let \(x \) be an element of \(G \). We have

\[(\varphi \sigma_g \varphi^{-1})(x) = \varphi(g \varphi^{-1}(x)g^{-1}) = \varphi(g)\varphi(\varphi^{-1}(x))\varphi(g^{-1}) = \varphi(g)x\varphi(g)^{-1} = \sigma_{\varphi(g)}(x). \]

b. If \(G \) has trivial center and \(\varphi \) commutes with all \(\sigma_g \), show that \(\varphi \) is the identity map.

By part (a), if \(\varphi \) commutes with all \(\sigma_g \), then \(\sigma_g = \sigma_{\varphi(g)} \) for all \(g \in G \). Because \(G \) has trivial center, two elements \(a \) and \(b \) of \(G \) are equal if and only if the automorphisms \(\sigma_a \) and \(\sigma_b \) are equal. Indeed, if \(\sigma_a = \sigma_b \), then you’ll find by messing around that \(ab^{-1} \) commutes with all elements of \(G \) and is therefore the identity. Accordingly, we have \(\varphi(g) = g \) for all \(g \in G \), which shows of course that \(\varphi \) is the identity map.