Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in complete sentences. Your explanations are your only representative when your work is being graded.

Name: Ken Ribet

SID: Rough solutions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max Points</th>
<th>Your Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

1. Find the smallest positive integer n for which the alternating group A_n has an element of order 1000.

Notice that $1000 = 10^3 = 2^35^3$. We can try to multiply an 8-cycle by a 125-cycle, but the 8-cycle will be odd and the 125-cycle will be even. I suspect that the best that we can do is to multiply together disjoint cycles of lengths 8, 2 and 125. My answer seems to be 135. I wonder if this is correct! I’ll find out soon enough when I grade the papers. If one can do better, surely a student will tell me how.

2. Show that every group of order 12 has a normal Sylow subgroup.

This is pretty standard, so maybe you’ve seen the problem before. The number of 3-Sylows divides 4 and is 1 mod 3. Therefore it’s either 1 or 4. If it’s 1, there’s a normal 3-Sylow. If not, there are $4 \times 2 = 8$ elements of order 3 in the group. This leaves four elements of order other than 3. The elements of a 2-Sylow (which has order 4) are of order $\neq 3$. Thus there can be only one 2-Sylow.
3. Let R be an integral domain.

a. Explain what it means for an element of R to be prime and what it means for an element of R to be irreducible.

These notions are defined in the book.

b. Show that 2 is an irreducible element, but not a prime element, of the ring $\mathbb{Z}[\sqrt{-3}]$.

As I explained on a couple occasions in class, we have $2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ in the ring. Clearly 2 cannot be prime because it divides neither factor on the right-hand side of the equation (but does divide their product, which is 4). On the other hand, 2 is irreducible because there is no element of norm 2 in the ring. (For details, see your class notes.)

c. Suppose that all ideals of R are principal. If r is an irreducible element of R, show that the ideal (r) is maximal and that r is a prime element of R.

If r is irreducible and I is an ideal of R containing (r), then $I = (a)$ for some $a \in R$. Because $r \in (r) \subseteq (a)$, r is a multiple ab of a. The equation $r = ab$ forces a or b to be a unit because r is irreducible. In one case, $I = R$; in the other, $I = (r)$. Thus (r) is a maximal ideal, which implies that it is a prime ideal. That (r) is a prime ideal means that r is a prime element, essentially by definition.

4. Let A and B be subsets of a finite group G for which $|A| + |B| > |G|$. Let g be an element of G, and let $gB^{-1} = \{ gb^{-1} \mid b \in B \}$. Show that $A \cap gB^{-1} \neq \emptyset$ and conclude that $g = ab$ for some $a \in A$, $b \in B$.

5. This problem concerns $n \times n$ matrices of real numbers.

a. Suppose that M is such a matrix and that X and Y are $n \times n$ matrices with a single non-zero entry, which is equal to 1. Describe the product XYM in terms of the entries of M and the positions of the non-zero entries in X and Y.

If X has a “1” in position ab and Y has a “1” in position cd, then XYM has m_{bc} in position ad; all other entries in the product are 0. (I hope that this is correct!)

b. Show that the ring of $n \times n$ matrices of real numbers has no two-sided ideals other than (0) and the whole ring.

Let I be a 2-sided ideal of the indicated ring. Suppose I is non-zero and let M be a non-zero element of I. Say that the entry m_{bc} is non-zero. Multiplying M by an appropriate scalar matrix, we can and do assume that $m_{bc} = 1$. Then the various products XYM
have their unique 1’s in all possible positions \(ad\). By taking linear combinations of such products, we can get all elements of \(R\) inside \(I\).

6. Let \(C\) be a cyclic group of order \(p^n\), where \(p\) is an odd prime number and \(n\) is a positive integer. Show that \(C\) has a unique automorphism of order 2.

As we discussed in class numerous times, if \(C\) is cyclic of order \(N\), then the group of automorphisms of \(C\) is \((\mathbb{Z}/N\mathbb{Z})^\ast\). The problem is to show that \((\mathbb{Z}/p^n\mathbb{Z})^\ast\) has a unique element of order 2 (namely, \(-1\)). An element of order dividing 2 (i.e., of order 1 or 2) corresponds to an integer \(x\) satisfying \(x^2 \equiv 1 \pmod{p^n}\). Since, in particular, \(p\) will divide \(x^2 - 1 = (x - 1)(x + 1)\), we have \(x \equiv 1 \pmod{p}\) or \(x \equiv -1 \pmod{p}\). If \(x \equiv 1 \pmod{p}\), then \(p\) does not divide \(x + 1\). Hence the divisibility by \(p^n\) of the product \((x - 1)(x + 1)\) implies that \(p^n\) divides \(x - 1\), i.e., that \(x\) is 1 mod \(p^n\). In this case, the element of \((\mathbb{Z}/p^n\mathbb{Z})^\ast\) that we are dealing with is 1, which has order 1. If \(x \equiv -1 \pmod{p}\), then by an analogous argument we get \(x \equiv -1 \pmod{p^n}\). Of course, in this case the unique automorphism of order 2 of \(C\) is the map “inversion” or “multiplication by \(-1\),” depending on whether \(C\) is written multiplicatively or additively.

7. Suppose that \(I\) and \(J\) are ideals of a commutative ring \(R\) with the property that the canonical map

\[
R \rightarrow R/I \times R/J
\]

is surjective (“onto”). Show that \(I\) and \(J\) are comaximal in the sense that \(I + J = R\).

Take \(r \in R\) that maps to \((0, 1)\) under the canonical map. We have \(r + I = 0 + I\) and \(r + J = 1 + J\). The first equation means that \(r\) is an element of \(I\). The second means that \(1 - r\) is an element of \(J\), say \(s\). Then we have \(1 = r + s\) with \(r \in I\), \(s \in J\). It follows that the ideal \(I + J\) contains 1 and must therefore be all of \(R\).

8. Let \(n\) be a positive integer. Let \(R\) be the ring \(\mathbb{C}^n\) whose elements are \(n\)-tuples of complex numbers and whose ring operations are componentwise addition and multiplication. For each \(i\), \(1 \leq i \leq n\), let \(\pi_i : R \rightarrow \mathbb{C}\) be the \(i\)th projection \((x_1, \ldots, x_n) \mapsto x_i\).

a. Show that the kernel of \(\pi_i\) is a maximal ideal of \(R\).

By the first, isomorphism theorem, \(R/ \ker \pi_i\) is isomorphic to the image of \(\pi_i\). This image is clearly all of \(\mathbb{C}\), which is a field.

b. Prove that each maximal ideal of \(R\) is the kernel of \(\pi_i\) for some \(i\).

Let \(I\) be a maximal ideal of \(R\). Then \(I\) is a prime ideal. Also, \(I\) isn’t 0 because each of the \(\ker \pi_i\) in part (a) are proper ideals of \(R\) that are bigger than 0. In \(R = \mathbb{C}^n\), let \(e_1, \ldots, e_n\) be the “standard basis vectors” of linear algebra. For each pair of indices \(i\) and \(j\), we have \(e_i e_j = 0 \in I\). Hence for each pair \((i, j)\), either \(e_i\) or \(e_j\) is in \(I\). Since \(e_1 + \cdots + e_n = 1 \in R\), it is clear that \(I\) cannot contain all of the \(e_j\) (because \(I\) isn’t all of \(R\)). Let’s say specifically
that e_i is not in I. Then, as explained above, all of the e_j with $j \neq i$ are in I. By taking linear combinations of these elements, we see that I contains all (a_1, \ldots, a_n) with $a_i = 0$. But these elements constitute ker π_i! Hence I contains ker π_i and must be equal to ker π_i because I is proper and the kernel is maximal.