
Labeled Trees and Parking Functions

Directed Reading Program

Emma Yang

November 2024

1 A Preamble

I was never the biggest fan of trees—I remember finding them arbitrary and superfluous when first

encountering them in Math 55, contrary to what I appreciated most about math. Yet, reading

about combinatorics this semester and how trees fit into the whole picture has allowed me to see

its connections with a plethora of other mathematical objects, and I have to admit that I can now

appreciate them much more.

Many thanks to my mentor, Mistuki, for her patient, thorough, and adept guidance throughout this

semester, both in DRP and Math 110, as well as my fellow mentee Jasmine. I enjoyed reading Sagan

with you both!

2 Trees and Cayley’s Formula

Trees are an important object in graph theory. They are also pretty interesting to count! In this

section, I’ll discuss labeled trees on the vertex set [n] = {1, 2, ..., n} specifically, and one way we can

count them. Before that, let’s get some definitions out of the way.

Definition 2.1: A tree is a connected and acyclic graph.

Definition 2.2: A labeled tree is a tree in which each vertex is given a unique label.

The main theorem I will prove is as follows.

Theorem 2.1(Cayley’s Formula): The number of labeled trees on n vertices is nn−2.

There are many ways to prove this result, including the well-known Prüfer algorithm and Matrix

1

Tree Theorem. Here, I will prove the result using a generating function—algebraic objects associated

with polynomials or series that make counting easier.

Proof: (Cayley’s Tree Enumerator)[1]

Consider the set of labeled trees on the vertex set [n] = {1, 2, ..., n}.

Use x1, ..., xn to represent each vertex, and di(T) to denote the degree of each vertex xi.

Definition 2.3: The degree of a vertex is the number of edges emanating from it.

Associate every tree T on the vertex set [n] to the monomial

xT = x1
d1(T)...xn

dn(T).

This is a neat way of associating trees with algebraic objects, especially because we can also interpret

xT as the product over all edges of T :

xT =
∏

{i,j}∈E(T)

xixj .

This is because the variable occurs once in the product for every edge it is a part of; thus, the degree

of each vertex-variable equals the number of edges it is associated with, which is precisely the degree

of that vertex!

Then, the sum of the monomials, each representing a tree in the set of labeled trees, creates a

generating function that can be written as follows:∑
T

xT = x1x2...xn(x1 + x2 + ...+ xn)
n−2.

Our goal is to show that this generating function in fact enumerates trees on [n].

Theorem 2.1.1: The generating function enumerating trees on [n] by the degrees of vertices is

given by ∑
T

xT = x1x2...xn(x1 + x2 + ...+ xn)
n−2,

i.e.,

Cn(x) =
∑
T

xT ,

where Cn(x) denotes the number of labeled trees on n vertices.

Proof:

We will prove that the polynomials Cn(x) and
∑

T xT = x1x2...xn(x1 + x2 + ... + xn)
n−2 are the

2

same by induction on n.

Base case: n = 1. There is one labeled tree on n, and
∑

T xT = x1(x1)
1−2 = 1. Thus Cn(x) =∑

T xT holds.

Inductive hypothesis: Suppose Cn(x) =
∑

T xT holds for trees on n− 1 vertices when n > 1.

Inductive step: Show Cn(x) =
∑

T xT holds for trees on n vertices.

Notice that both polynomials contain some variable xi to exactly the first power. This follows for

Cn(x) as every tree has a leaf—a vertex of degree 1; it follows for x1x2...xn(x1 + x2 + ... + xn)
n−2

because (x1 + x2 + ...+ xn)
n−2 has degree n− 2, which implies that each of its terms omits at least

one variable, while those variables still retain a first power from the preceding x1x2...xn. Thus, we

can fix an index i and consider only those terms containing xi to the first power.

To extract these terms, we divide both polynomials by xi, as every term contains xi to at least the

first power, then set xi = 0 in the remaining terms. This way, we have kept the terms that originally

contained xi to the first power while terms with a higher power of xi is turned into 0. We then want

to show that for all i, the following holds:

(x−1
i Cn(x))xi 7→0 = (x−1

i x1 . . . xn(x1 + · · ·+ xn)
n−2))xi 7→0.

Without loss of generality, assume i = n. First, observe that for the RHS, we have

RHS = (x−1
n x1 . . . xn(x1 + · · ·+ xn)

n−2))xn 7→0

= x1 . . . xn−1(x1 + · · ·+ xn−1)
n−2

= (x1 + · · ·+ xn−1)Cn−1(x1, . . . , xn−1),

where the second equality follows from plugging in xn = 0, and the third equality comes from the

inductive hypothesis.

On the LHS, our procedure of dividing out by xn and setting xn = 0 leaves us with only the trees

for which the vertex n was a leaf on the tree T, now each with the leaf n removed. To acquire the

sum of these trees, we multiply both sides by xn, thereby restoring the leaf n to the trees on the

LHS, without recovering the trees for which n was not a leaf. Thus, we now want to show:∑
T : n is a leaf

xT = xn(x1 + · · ·+ xn−1)Cn−1(x1, . . . , xn−1),

i.e., that the RHS enumerates trees with vertex n as a leaf. To construct a tree for which n is a

leaf, choose any tree T ′ on [n − 1], then connect any vertex in T ′ to n. The choice for T ′ is given

by the generating function Cn−1(x1, . . . , xn−1), while the generating function for the choice of an

3

edge i, n with 1 ≤ i ≤ n is xn(x1 + · · · + xn−1). Thus,
∑

xT∗ , where T ∗ denotes a tree where n is

a leaf, can be expressed as the product of these two generating functions, giving precisely the RHS.

Because this equality holds for any vertex xi which is a leaf, and equivalently, each monomial for

which xi has a power of 1, it means each of these monomials has the same coefficient on both sides.

This implies Cn(x) =
∑

T xT .

Finally, to count the number of labeled trees on [n], we simply plug in 1 for all the variables xi as

follows:

Cn(x) = x1x2...xn(x1 + x2 + ...+ xn)
n−2

= 1 · (n)n−2

= (n)n−2,

to get a total of nn−2 trees.

3 Cayley’s Formula and Parking Functions

Something cool about Cayley’s Formula is that the number nn−2 can also be found when counting

other funky objects. One interesting example is the parking function.

Defintion 3.1: Parking Functions

Consider a procession of n cars, labeled from A1, ..., An. They happen to be driving into a parking

lot with n parking spaces, numbered 1, ..., n, and each car Ai has a preferred parking spot pi.

. . .
An A2 A1

1 2 . . . n

Fig. 3.1: The parking situation

As the cars drive through the parking lot, they park in their desired spot pi if it’s open; otherwise,

they’ll park in the next empty space if there is one, or leave the lot entirely. We call p = (p1, ..., pn),

the list of the cars’ preferred spots, a parking function of length n if all cars manage to park.

Note that not all the cars have to park in their preferred spots in order for a list to be a parking

function! In fact, the following claim illustrates the algebraic properties of a parking function:

Theorem 3.1: p is a parking function if and only if its unique weakly increasing rearrangement p′

4

satisfies p′i ≤ i for all n ∈ [n].

Proof [2]: First, let p ∈ PFn and let p′ be its weakly increasing rearrangement. Assume there exists

i such that p′i > i. Then, there will be no car in parking spot i and consequently one car that will

not be able to park. Therefore, p′i ≤ i must hold.

To prove the converse, we pick p′ as a weakly increasing vector that satisfies p′i = i. This is clearly a

parking function, as all cars will be parked in their desired spots. Moreover, decreasing the preferred

spot for any car, i.e., making p′i < i, will not result in it leaving the lot, as they can proceed to the

next empty spot which exists because no spots are skipped as a result of p′i > i. Any rearrangement

of such a vector p′ is still a parking function: if the preferences are distinct, all cars will park in their

desired spots by the same logic; if not, rearranging p′ will not change the fact that all cars will be

able to park somewhere, and only affects the order in which the parking spots are taken and where

each car ultimately parks.

A combinatorial question about these parking functions is how many of them there are for n hypo-

thetical cars. We have the following result:

Theorem 3.2: The number of parking functions of length n is (n+ 1)n−1.

Wow! The number of parking functions of length n happens to be exactly the number of labeled

trees on n+1 vertices. This hints that we can try constructing a bijection between these two objects

in order to prove Theorem 3.1. But before diving into that bijection, let’s prove this result directly.

Proof 1 (The Division Rule): The idea here is to count a larger set of functions than what we are

counting, then divide cleverly in order to get our desired number.

To achieve this, let’s add another parking spot to our lot called “0”, and rearrange the lot so that

it is circular, like so:

1

23

...

n 0

Fig. 3.2: New parking lot!

Now, instead of requiring cars to leave the lot once there are no more open spots, they are allowed

to park in the 0th spot, then the 1st spot, and so on, following the circular arrangement of parking

spots until every car is parked. Now, our n cars will have n+ 1 choices to park. This gives a total

of (n + 1)n possible sequences that denote the cars’ desired parking spots: there are n slots for n

5

cars, and n+1 choices for each slot. Moreover, there will always be one spot open after all cars have

parked, and a sequence will be a parking function if and only if the empty spot is the 0th spot.

Notice that the sequences denoting the cars’ desired spots are identical up to rotation, and each

rotation simply changes which of the n+ 1 parking spots is empty—this means there are n+ 1 sets

of identical sequences up to rotation. For instance, the sequence (1, 1, 2) is the same as (2, 2, 3),

(3, 3, 0), and (0, 0, 1). It is easy to see that only one of the sequences in any group is an actual

parking function—the one which corresponds to an empty 0th spot (which would be (1, 1, 2) in our

previous example)! Thus, we are able to divide all cases, (n + 1)n, by n + 1 to get the number of

parking functions of length n, (n+ 1)n−1.

The division rule is a technique we encountered early on in our counting career, and we were able

to apply it in proving Theorem 3.2. However, this semester, I learned that constructing bijections

is also an effective counting method: to count a set, simply biject it to a different set that you can

already count, and they will automatically have the same cardinality.

Here, I will prove Theorem 3.2 by constructing a bijection between labeled trees on n + 1 vertices,

which we can count using what we proved in Section 2, and parking functions of length n.

Proof 2 (Labeled Trees Bijection):

Our goal is to construct a bijection between

(1) parking functions of length n, and

(2) labeled trees on n+ 1 vertices.

Denote the set of all parking functions of length n as PF (n), and the set of all labeled trees on n+1

vertices as Tn+1. Note that from Theorem 2.1, we have |Tn+1| = (n+ 1)n−1, by plugging in n+ 1

instead of n.

First, construct a function f : Tn+1 → PF (n), which takes a tree and outputs a parking function,

defined by the following algorithm. (This initial construction of f is from Sagan[4] Chapter 1,

Exercise 32, which we read this semester!)

Step 1: Let T ∈ Tn+1, whose vertices are labeled 0, . . . , n. Call vertex 0 the root of the tree. Draw

T such that the root’s children (vertices connected to the root) are in increasing order from left to

right. Continue to do so for the children of the root’s children (the grandchildren), etc.

Step 2: Create a permutation π by reading the children of the root from left to right, then the

grandchildren of the root from left to right, and so on, until you reach the last vertex.

Step 3: Then, orient each edge of T so that it points from a vertex to its parent and call this set

of arcs A.

6

Step 4: Map T to p = (p1, . . . , pn) where

pi =

1 if i⃗0 ∈ A

1 + j if ⃗iπj ∈ A

Hence, f(T) = p ∈ PF (n) for some T ∈ Tn+1.

Proof 2.1:

p is in fact a parking function because its weakly increasing rearrangement p′ respects p′i ≤ i.

Any p′i will either equal 1 or 1 + j, where j is defined as in the algorithm above. There will always

be at least one vertex k connected to 0 which results in pk = 1, hence p′i ≤ 1. If p′i = 1 + j,

assume 1 + j > i, which implies j > i − 1. j denotes the index of the vertex that the ith vertex is

a child of. However, this is impossible because j exceeds the number of already-existing vertices to

which children can be added to, which is precisely i− 1, or the number of preceding numbers in the

sequence (this will become more clear with the construction of the inverse of f). Thus, p′i ≤ i must

hold.

Example 4.1

We are able to get a parking function from the following labeled tree which we call T .

0

3

21

Fig. 3.3: A labeled tree T

We create a permutation π = (312), by reading off the children and grandchildren of the root from

left to right. Then, by orienting the edges such that each vertex points to its parent, we get a set of

arcs A = {>30,>23,>13}. We then map T to p, as follows:

p1 should be 1+1 = 2, as the arc that starts from 1 is
>
13, and 3 is the first number in our permutation,

meaning j = 1.

p2 should be 1 + 1 = 2 as well, since
>
23 is the corresponding arc, and j = 1 again.

p3 should be 1, as the vertex 3 is the child of vertex 0 meaning that the arc is
>
30.

Thus, T is mapped to p = (2, 2, 1), which is indeed a parking function.

7

We then construct the inverse of f , called f ′, in order to show f is a bijection. f ′ should thus map

elements of PF (n) to elements in Tn+1.

In the following construction, note that “vertex n” or the “nth vertex” refers to the vertex whose

index n is given by the number we get when counting (from 1) the children of vertex 0 from left

to right, then the grandchildren of 0 from left to right, and so on (as we did in the algorithm for

f). This index, which is crucial in the reconstruction and labeling of the tree, is distinct from the

ultimate label the vertex will get (this process is detailed in Step 2).

Now, we can construct f ′ : PF (n) → Tn+1 as follows:

Step 1: Let p ∈ PF (n). Rewrite p in its weakly increasing arrangement p′. We start with a 0

vertex.

For i = 1, . . . , n, create a child of vertex p′i − 1 for each p′i. This gives the shape of the tree.

Step 2: Now, we refer to the original parking function p to label the remaining vertices of our tree.

For i = 1, . . . , n, label the child of the (pi − 1)th vertex “i”. Label each generation from left to right.

f ′ must output a tree, as our algorithm only adds children to existing vertices, which results in no

cycles. Moreover, the tree will be on n + 1 vertices, as we will create n new vertices from the n

numbers in the parking function in addition to the original 0 vertex.

Example 4.2

Let’s take the parking function (2, 2, 1) that we got from applying f to the tree T in Example 4.1

and show that f ′ maps it back to T . Rewriting (2, 2, 1) in its weakly increasing arrangement, we get

(1, 2, 2).

Start with the 0 vertex.

0

For p′1 = 1, we create a child of the 0th vertex, which we start with.

0

For p′2 = 2, we create a child of the 1st vertex—the vertex we’ve just created.

8

0

For p′3 = 2, we create another child of that first vertex.

0

Fig. 3.4: Reconstructed tree

We have successfully reconstructed the shape of the tree! Now, let’s label the vertices we’ve created

using the original parking function (2, 2, 1).

p1 = 2, so we will label the child of the first vertex (counting the children of 0 from left to right,

then the grandchildren and so on) as 1, starting from the leftmost child.

0

1

p2 = 2, so we will label the next child of the first vertex as 2.

0

1 2

p3 = 1, so we label the leftmost (and only) child of 0 as 3.

This is precisely T , the tree we started with!

To prove f ′ is the inverse of f , which will mean that f is bijective, we show that f ′ ◦ f and f ◦ f ′

are identity maps on their respective domains. This holds by construction, as f ′ was constructed by

9

0

3

21

Fig. 3.5: Relabeled tree

reversing the steps of f , which itself is a well-defined function, as shown previously. Thus, both are

well-defined functions mapping the same sets to each other in opposite directions.

Finally, f : Tn+1 → PF (n) is bijective, which implies Tn+1 and PF (n) have the same cardinality,

i.e., |PF (n)| = |Tn+1| = (n+ 1)n−1.

Congrats, we’ve reached the end! To review, I applied a few of the counting techniques I’ve

explored during my semester doing DRP in this write-up. Specifically, I counted labeled trees on n

using a generating function, and parking functions of length n using the division rule and a bijection

between the aforementioned labeled trees. I hope you learned something interesting, as I certainly

have, and thanks for reading! :)

10

References

[1] Mark Haiman. Notes on the Matrix-Tree theorem and Cayley’s tree enumerator. 2010.

[2] Jan Kretschmann. Combinatorial problems related to optimal transport and parking functions.

2023.

[3] Jeremy L. Martin. What Else Can You Count If You Can Count Trees? 2020.

[4] Bruce Sagan. Combinatorics: The Art of Counting. American Mathematical Society, Providence,

2020.

[5] Yufei Zhao. Bijections.

11

https://math.berkeley.edu/~mhaiman/math172-spring10/matrixtree.pdf
https://dc.uwm.edu/cgi/viewcontent.cgi?article=4418&context=etd
https://jlmartin.ku.edu/talks/Washburn2020.pdf
https://users.math.msu.edu/users/bsagan/Books/Aoc/final.pdf
https://yufeizhao.com/olympiad/bijections.pdf

	A Preamble
	Trees and Cayley's Formula
	Cayley's Formula and Parking Functions

