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1 Introduction
This paper presents an overview of the work of A. Vershik and A. Okounkov on the Representation Theory

of the Symmetric Groups. Specifically focusing on their results showing how the natural chain formed by the
symmetric groups (Sn+1 ⊃ Sn ⊃ · · · ) is reflected in their representations. Furthermore, discussing how the
combinatorics of Young diagrams and Young tableaux can be described as emerging from the relationships
among the symmetric groups rather than constructed as an external framework.

1.1 Representation Theory
This section will present definitions, theorems, and concepts that A. Vershik and A. Okounkov work is based

on. We will be focused on finite groups in this paper thus definitions and theorems will be modified accordingly,
additionally in this paper we will work over C.

Definition 1.1. A representation of a finite group G is a vector space V over a filed C equipped with the
homomorphism ρ : G → GL(V ).

Remark 1.1. From now on we will refer to the representation of a finite group G as (ρ, V ), where ρ is the
homomorphism described in definition 1.1 and elements of such representation will be denoted as ρ(g).

In relation to the work that will be focused on this paper the following topics of representation theory is of
the most importance.

Definition 1.2. A sub-representation of a representation (ρ, V ) is a subspace U ⊂ V which is invariant under
operations of ρ(g), g ∈ G.

Definition 1.3. An irreducible representation (ρ, V ), ̸= 0, is a representation such that it’s only sub-representations
are 0 and itself.

Let us now define how we relate two representations, take to be (ρ, V1), (π, V2), of a group G. A homomor-
phism of representation is a map ϕ : V1, → V2 such that ϕ(ρ(g)v) = π(g)(ϕ(v)) for g ∈ G, v ∈ V1. We call ϕ
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an isomorphism of representations if it is an isomorphism of vector spaces. We define the set of homomorphism
from V1 to V2 as HomG(V1, V2).

Remark 1.2. Homomorphism of representations are also referred to as intertwining maps.

We then result with the one of the most important theorems of representation theory that will be referred to
extensively in the paper.

Theorem 1.1. Schur’s Lemma ( [2], Proposition 2.3.9): Let V be a finite dimensional irreducible representation
of an algebra A over C (an algebraically closed field), and let ϕ : V → V be an intertwining operator. Then
ϕ = λ·Id for some λ ∈ C (a scalar operator).

Proof. Let λ ∈ C be a root of ϕ’s characteristic polynomial, thus an eigenvalue of ϕ. Hence take ϕ − λ · Id to be
an intertwining operator, i.e, ϕ − λ · Id : V → V . Since λ is an eigenvalue of ϕ, we have det(ϕ − λ · Id) = 0, so
ϕ − λ · Id is not invertible. This implies that ker(ϕ − λ · Id) ̸= {0} thus ∃v ∈ V : (ϕ − λ · Id)(v) = 0, or rather,
ϕ(v) = λ · Id(v). Although, by the irreducibility of V the invariant subspace ker(ϕ − λ · Id) of V must be all of
V which implies ϕ − λ · Id = 0 as an operator =⇒ ϕ = λ · Id.

The following corollary of Schur’s Lemma then gives the basis to our paper.

Corollary 1.1.1. Let A be a commutative algebra. Then every irreducible finite dimensional representation V of
A is 1-dimensional.

Proof. The inclusion to the left is obvious, that is if we have a 1-dimensional finite representation V then it’s
only subspaces are {0} and itself, thus irreducible. For the inclusion to the right:
Take V to be an irreducible representation and consider the intertwining operator ρ(a) : V → V for a ∈ A,
then ρ(a) = λ·Id for λ ∈ C by Theorem 1.1, that is ρ(a) acts as a scalar operator on V . Hence take a subspace
of V , W , then ρ(a) · W = λ · W ∈ W as W is closed under scalar operations. So we have an invariant
subspace under ρ(a) making W a subrepresentation of V . Although since we have V to be irreducible then
W = {0} or V =⇒ dim V = 1.

A result of representation theory is that of semi-simple group, a group such that it’s representation V is a
direct sum of irreducible representations. Let us define it as

V = V ⊕α1
1 ⊕ · · · ⊕ V ⊕αi

i

where Vi are irreducible, pairwise non-isomorphic, representations and αi are the multiplicities of Vi in V .

Theorem 1.2. ( [2], Proposition 3.5.8): Any finite dimensional representation of a finite group G is completely
reducible (that is, isomorphic to a direct sum of irreducible representations).

1.1.1 The Symmetric Group Sn

The symmetric group Sn at the core of this paper and is one of the most interesting groups to work with. The
following are summarizations of key definitions and properties of Sn:

Definition 1.4. The symmetric group,Sn, is the group of all permutations of the set {1, 2, . . . , n} with order n!.
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The structure of Sn is crucial for understanding its representations, and its subgroup relationships reveal
deeper combinatorial connections. For instance, we have a natural inclusion of Sn−1 ⊂ Sn as {σ ∈ Sn|σ(n) =
n} ≃ Sn−1. A partition λ of n is a representation of n in the form n = λ1 + · · · + λp, where λi are positive
integers and λi ≥ λi+1. [2]

Definition 1.5. A Young diagram is a graphical representation of the partition of n. That is for λ we attach
a Young diagram which is the union of rectangles −j ≤ y ≤ −j + 1, 0 ≤ c ≤ λj in the coordinate plane for
j = 1, . . . , p. Let us denote it with Yn [2]

A Young tableau corresponding to a Young diagram is the result of filling the numbers 1, . . . , n into the
squares of the diagram in some way without repetition.

Take S4, for example, and note that the partitions of 4 correspond to the distinct conjugacy classes of S4.
Then it’s young diagram, Y4, will have the following structure corresponding to it’s partitions λ1 = (4) λ2 =
(2, 2) λ3 = (2, 1, 1) λ4 = (3, 1) λ5 = (1, 1, 1, 1)

Yλ1 = Yλ2 = Yλ3 = Yλ4 = Yλ5 =

Then the Young tableau will be

1 2 3 4
1 2
3 4

1 2
3
4

1 2 3
4

1
2
3
4

The item of interest in this paper will be the Young Graph, which is a branching graph for Young diagrams
of Sn, in particular.

Where the first level corresponds to S1, the second S2, and the third S3, and so on.
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1.1.2 Characters

One of, if not the most important tool in representation theory is character theory. It is a tool based on the
idea that knowledge of the eigenvalues of each element of G is enough to sufficiently describe the representation
of such group.

A character, χV , of a representation V of G is the complex-valued function on the group defined as:

χV (g) = Tr(g|V )

the trace of g on V . Characters also satisfy the following for representations V, W of G

χV ⊕W (g) = χV (g) + χW (g)
χV ⊗W (g) = χV (g) · χW (g)
χV ∗(g) = χV (g)

where V ∗ is the dual of V . [3] Consider the set V G = {v ∈ V : gv = v, ∀g ∈ G}, thus we wonder how we can
find V G explicitly. Thus we turn to the formula that takes the average of all endomorphisms g : V → V , that
is

φ = 1
|G|

∑
g∈G

g ∈ End(V )

Then if we only want to know the number m of copies of the trivial representation appearing in the decomposition
of V , we simply look at the trace of φ that is

m = dim V G = Trace(φ)

= 1
|G|

∑
g∈G

Trace(φ) = 1
|G|

∑
g∈G

χV (g)

From here the following is then developed [3]

1
|G|

∑
g∈G

χV (g)χW (g) =

1 if V ≃ W

0 if V ̸≃ W

Where we deduce that

Theorem 1.3. The characters of the irreducible representations of G are orthonormal.

In consequence to the above theorem, we get that the number of irreducible representations of G is less than
or equal to the number of conjugacy classes, much to do with how the character of a representation of a group G
is really a "function on the set of conjugacy classes in G" [3], and in working with Sn we find that it is equal. To
see these principles in action, let us construct the character table of S4.

Recall the conjugacy classes of S4, that is {(1), (12), (123), (1234), (12)(34)}, which correspond to the
partitions of 4 (see Section 1.1.1). To begin, take the trivial representation (U ), which when acted on the
conjugacy classes has values (1, 1, 1, 1, 1). Then when we take the alternating representation (U ′), that is the

representation ρ(σ) = sgn(σ) =

1 if σ is an even permutation
−1 if σ is an odd permutation

where σ ∈ S4 is even if it’s decomposition
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into transpositions has an even amount of 2-cycles, and odd otherwise. The alternating representation will
have values/characters (1, −1, 1, −1, 1). Now let us consider the standard representation of S4, that is the
representation of S4 on the vector space V = {(x1, x2, x3)|x1 + x2 + x3 = 0} where we have the following
decomposition

C4 = V ⊕ U

In order to find the values of the characters of V , we must find the characters of C4 and use our property
listed previously, in particular χV ⊕W = χV + χW . Thus let us look at C4 under the permutation actions of the
conjugacy classes of S4, that is the fixed point formula.

Definition 1.6. The fixed point formula states that if V is the permutation representation associated to the
action of a group G on a finite set X , then χV (g) is the number of elements of X fixed by g.

Take the standard vectors of C4 to be {α1, α2, α3 α4} then

(1) fixes 4 elements
(12) fixes 2 elements

(123) fixes 1 elements
(1234) fixes 0 elements

(12)(34) fixes 0 elements

Thus χC4 = (4, 2, 1, 0, 0), so now we can solve χC4 = χV + χU −→ χV = χC4 − χU thus we result in
χV = (3, 1, 0, −1, −1)

To get the remaining two representations, we will first tensor our standard representation with our alternating
representation, then construct our last representation through the orthogonality relations of characters from
Theorem 1.3.

Thus we will have V ′ = V ⊗U ′ which then gets us χV ′ = χU ×χU ′ = (3, 1, 0, −1, −1)×(1, −1, 1, −1, 1) =
(3, −1, 0, 1, −1). Then from our orthogonality relations we obtain the last row and get the following character
table.

S4 (1) (12) (123) (1234) (12)(34)
U 1 1 1 1 1
U’ 1 -1 1 -1 1
V 3 1 0 -1 -1
V’ 3 -1 0 1 -1
W 2 0 -1 0 2

1.1.3 The Group Algebra C[G]

Studying Sn can get quite abstract and complex once we reach higher values of n. Thus we introduce the
group algebra C[G] (where in this paper we take G = Sn) which will simplify and make studying Sn more
computational rather than abstract. Let us list key definitions and properties that will be used in this paper.

Definition 1.7. The C[G], of a finite group G is the vector space over C with basis elements {g : g ∈ G}, that is

C[G] = {ag : a ∈ C, g ∈ G}
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The center of the group algebra C[G], A(C[G]), is the subalgebra of elements that commute with all others
in C[G]. Of most importance, the elemtns of A(C[G]) are linear combinations of sums of group elements in the
same conjugacy class. A key result from studying C[G] is the following

Theorem 1.4. Wedderburn-Artin Theorem: If R is a semi-prime left arinian ring then

R ≃ Mn1(D1) × · · · × Mnr(Dr)

where each Di is a division ring and Mn(D) denotes the ring of n × n matrices over D.

In relation to group algebras, which are semi-prime left arinian rings, we have the following decomposition
that plays a huge role in A. Vershik and A. Okounkov work

C[G] ≃
r⊕

i=1
Mni

(C)

where ni is the dimension of the i-th irreducible representation.

2 Motive
The representation theory of symmetric groups has long been a cornerstone of algebra and combinatorics,

providing deep insights into the structure and relationships of these fundamental groups. A classical approach to
studying representations of symmetric groups relies heavily on the combinatorial framework of Young diagrams
and tableaux, which encode the structure of irreducible representations. However, this approach often introduces
these combinatorial tools as external constructions, leaving their origin within the theory itself somewhat
opaque. The work of Vershik and Okounkov offers a novel perspective by showing that these combinatorial
objects naturally arise from the inherent relationships among symmetric groups through the chain of inclusions
Sn+1 ⊃ Sn ⊃ · · · . This perspective not only unifies the combinatorial and algebraic viewpoints but also provides
a more intrinsic understanding of the representations of symmetric groups.

The motive behind this approach lies in simplifying and systematizing the study of symmetric group repre-
sentations by leveraging the natural structure of the symmetric group chain. By analyzing how representations
of Sn extend or restrict to representations of Sn+1 and vice versa, Vershik and Okounkov uncovered an elegant
framework where combinatorial structures such as Young diagrams emerge directly from these transitions. This
method avoids the need to impose external combinatorial tools, instead deriving them as a consequence of the
group relationships. This intrinsic viewpoint not only provides new insights into symmetric groups but also
extends to broader applications, bridging representation theory, algebraic combinatorics, and probability theory
in innovative ways.

3 Methods
Now we will get into the actual result Vershik and Okounkov have gotten to, that is the isomorphism between

Bratteli Diagram of the symmetric groups and the Young diagram.

6



Figure 1: Bratteli diagram of S3 [1]

3.1 Bratteli Diagrams
Definition 3.1. A Bratteli diagram, also called a branching graph, of a chain of finite groups {1} = G0 ⊂
G1 ⊂ G2 ⊂ · · · is a graph that’s vertices are elements of the set⋃

n≥0
G(n)∧

Where G(n)∧ is the set of isomorphism classes of complex irreducible representation of G(n), and between
irreducible representation µ of Gn and λ of Gn+1 there are k directed edges from µ to λ if k is the multiplicity
of µ in the restriction of λ to Gn. [4]

The Bratteli diagram of Sn, relating to it’s infinite chain of groups {1} = S1 ⊂ S2 ⊂ · · · , has the structure
shown in Figure 1. The vertices in the graph represent the one-dimensional irreducible representations of Sn

where each level represents a different value of n, that is the first level corresponds to S1 and the second level
corresponds to S2 and so on.

In particular we have U1 to be the trivial representation, which corresponds to S1’s unique conjugacy class
(see Section 1 for a brief overview of how this is derived). Then for S2 it has two one-dimensional irreducible
representations, corresponding to it’s two conjugacy classes, and we find those two to be the trivial representation
U2 and the alternating representation U ′

2. For S3 we have similar results with the trivial representation U3 and
it’s alternative representation U ′

3, but then we also get the standard representation V .

The arrows between these one-dimensional irreducible representations describe how representations of Sn

restrict to Sn−1, or equivalently, how representations of Sn−1 can be extended to Sn. Focusing on the extension
of Sn−1, take Uλ ∈ (Sn−1)∧ and Uµ ∈ (Sn)∧ then we take Uλ and induce it up to Sn, and we find that Vµ will
appear as one of the irreducible components of the induced representation:

IndSn
Sn−1(Vλ) =

⊕
λ→µ

Vµ

Now to relate this to the Young diagrams of Sn we will need the following.

3.2 Gelfand-Tsetlin Algebra and GZ Basis
To establish the isomorphism between the Bratteli diagram of the symmetric group Sn and the Young diagram,

we introduce the Gelfand-Tsetlin algebra (GZ algebra) and the associated GZ basis. These concepts simplify
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the process of understanding the branching graph of Sn by providing a concrete algebraic framework. Working
with the GZ algebra enables us to better analyze the relationship between representations of Sn and Sn−1.

Definition 3.2. The Gelfand-Tsetlin algebra GZ(n) associated with Sn is the commutative subalgebra of
C[Sn] generated by the centers Z(C[Sk]) for k = 1, 2, . . . , n.

Remark 3.1. The algebra GZ(n) organizes the structure of irreducible representations in a way that aligns
naturally with the branching rules of Sn to Sn−1.

The GZ algebra plays a crucial role in constructing the GZ basis, a basis for the irreducible representations of
Sn that respects the hierarchical structure of the symmetric groups. The GZ basis enables us to work concretely
with the representation theory of Sn by relating it to the branching graph.

3.2.1 GZ Basis and Branching Graph Simplicity

The GZ basis is constructed recursively, reflecting the restriction of representations from Sn to Sn−1. Let Vλ

be an irreducible representation of Sn corresponding to a Young diagram λ. The GZ basis for Vλ is indexed
by

{λ(1), λ(2), . . . , λ(n)},

where each λ(k) represents a partition obtained by successively restricting λ from Sn to Sn−1, Sn−2, and so
on.

Definition 3.3. A Bratteli diagram is simple if, in the diagram, there is either 0 or 1 arrow going between an
irreducible Sn module and an Sn−1 module.

To analyze the simplicity of the entire Bratteli diagram of Sn, we focus on the commutative properties of
the GZ algebra. Specifically, we investigate the relationships between the centers Z(C[Sn]) and Z(C[Sn−1]).
Define:

Z(n − 1, n) ∼= Z(C[Sn],C[Sn−1]).

This is given by the following

Theorem 3.1. ( [4], Proposition 1.4) The following two conditions are equivalent

1. The restriction of any finite dimensional irreducible complex representation of the algebra M to N has
simple multiplicities.

2. The centralizer Z(M, N) is commutative

Proof. (1) ⇒ (2): Assume that the restriction of irreducible representations of M to N has simple multiplicities.
Consider the space HomN(Vµ, Vλ), where Vµ and Vλ are irreducible representations of N and M , respectively.
Since the multiplicities are simple, HomN(Vµ, Vλ) must be one-dimensional. The space HomN(Vµ, Vλ) is
also a module for the centralizer Z(M, N). If Z(M, N) were not commutative, this module could not be
one-dimensional. Therefore, Z(M, N) must be commutative.

(2) ⇒ (1): Now, assume that Z(M, N) is commutative. Since Z(M, N) is commutative, any irreducible
module for it is one-dimensional =⇒ HomN(Vµ, Vλ) is one-dimensional =⇒ Vµ appears in Vλ with
multiplicity 1 when restricted to N .
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Therefore, the two statements are equivalent.

Showing that Z(n − 1, n) is commutative ensures that the branching graph of C[Sn] is simple, meaning that
each irreducible representation of Sn corresponds uniquely to a path in the Bratteli diagram.

3.2.2 Connection to YJM Elements

To demonstrate commutativity, we leverage the Young-Jucys-Murphy elements Xi ∈ C[Sn] for i =
1, 2, . . . , n, defined as:

Xi = (1 i) + (2 i) + · · · + (i − 1 i),

We then see the following relation ( [4])

Xi =
j∑
1

(j − 1 j) −
k∑
i

(k − 1 k)

for (j − 1 j) ∈ Sj and (k − 1 k) ∈ Sk, in particular we get that Xi is the difference of an element of Z(i)
and an element of Z(i − 1) =⇒ Xi ∈ GZ(n). And we have stated GZ(n), the Gelfand-Tsetlin algebra, is
commutative thus the YJM elements commute.

Now we want to find some sort of relation between these commutative elements and that of the commutative
sub-algebra of C(Sn), we then get the following

Theorem 3.2. ( [4], Theorem 2.5) In the algebra C(Sn), consider it’s center Z(n) and the center Z(n − 1) of
the sub-algebra C(Sn−1) of C(Sn). Then

Z(n) ⊂ ⟨Z(n − 1), Xn⟩

Proof. Expanding the Jucys-Murphy element Xn to X2
n, we find:

X2
n =

n−1∑
i,j=1

(i, n)(j, n) =
∑
i ̸=j

(i, j, n) + (n − 1)I,

Where (i, j, n) ∈ Sn and (n − 1) ∈ Z(n − 1). Thus, the element
∑

i ̸=j(i, j, n) lies in ⟨Z(n − 1), Xn⟩.

Then we apply induction to generalize this process to cycles of length k + 1. By induction, assume that
conjugacy class indicators for cycles of length k are in ⟨Z(n − 1), Xn⟩. Consider the element:

Xn ·
∑

i1,...,ik−1

(i1, . . . , ik−1, n),

where Xn acts to extend each cycle of length k to a cycle of length k + 1. This produces:∑
i ̸=is

(i, n)(i1, . . . , ik−1, n) +
∑

i,i1,...,ik

(i, i1, . . . , ik, n).

The first summand involves products of cycles, with terms that lie in Z(n − 1). The second summand gives the
conjugacy class of cycles of length k + 1 in Sn, which also lies in ⟨Z(n − 1), Xn⟩.
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Repeating this process, we conclude that all conjugacy class indicators for Sn, including those corresponding
to cycles of any length, are in ⟨Z(n − 1), Xn⟩.

Finally, the classical result states that the center Z(n) of the group algebra C[Sn] is generated by the conjugacy
class indicators, which correspond to all one-cycle permutations in Sn. Since we have shown that these are in
⟨Z(n − 1), Xn⟩, it follows that:

Z(n) ⊂ ⟨Z(n − 1), Xn⟩.

restricting this further we result with

Theorem 3.3. The centralizer Z(n − 1, 1) ∼= Z(C(Sn),C(Sn−1)) of the algebra C(Sn−1) in C(Sn) is generated
by the center Z(n − 1) of C(Sn−1) and the element Xn:

Z(n − 1, 1) = ⟨Z(n − 1), Xn⟩

Proof. A linear basis for the centralizer Z(n − 1, 1) is the union of a linear basis for Z(n − 1) and classes of the
form: ∑

(i(1)
1 , . . . , i

(1)
k1−1, n)(i(2)

1 , . . . , i
(2)
k2 ) . . . (i(3)

1 , . . . , i
(3)
k3 ),

for i ∈ 1, . . . , n − 1

Now, if we add these classes to the classes from Z(n − 1), as done previously, we obtain all the classes from
Z(n). Therefore, we can express the basis for Z(n − 1, 1) as a linear combination of elements from the bases of
Z(n − 1) and Z(n):

Z(n − 1, 1) ⊂ ⟨Z(n − 1), Z(n)⟩.

Finally, since Z(n) ⊂ ⟨Z(n − 1), Xn⟩ (by Theorem 3.2) the result follows.

And finally we remain with

Theorem 3.4. ( [4], Theorem 2.9) The branching of the chain C(S1) ⊂ · · ·C(Sn) is simple.

Proof. We have shown that ⟨Z(n−1), Xn⟩ is commutative thus since Z(n−1, 1) ⊂ ⟨Z(n−1), Xn⟩, Z(n−1, 1)
is also commutative and from Theorem 3.1 the result follows.

Verifying the commutativity of ⟨Z(C[Sn−1]), Xn⟩ establishes the simplicity of the branching graph for
C[Sn].

3.2.3 From Simplicity to Young Diagrams

The simplicity of the branching graph implies that each irreducible representation of Sn corresponds uniquely
to a path in the branching graph, ensuring a one-to-one correspondence between these paths and irreducible
representations. This alignment directly reflects the structure of the Young graph, where each node represents a
partition, and edges correspond to valid branching steps.

By demonstrating simplicity, we establish that the combinatorial structure of the Young graph aligns perfectly
with the algebraic branching graph of Sn. Furthermore, the spectrum of the Gelfand-Tsetlin algebra GZ(n),
which indexes irreducible representations, matches the content of the Young diagrams. This correspondence
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guarantees that every irreducible representation of Sn is uniquely labeled by a path in the Young graph,
completing the isomorphism.

To solidify this connection, we note that the simplicity of the branching graph suffices to establish the
connection between Sn and the Young graph, ensuring that Spec(n) = Cont(n). Where Spec(n) is the set of
eigenvalues that arise when GZ(n) acts on an irreducible representation of Sn and Cont(n) is the content of
a Young diagram of n boxes which uniquely characterizes the Young diagram and the associated irreducible
representation.
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