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1 The Basic Method

1.1 The Probabilistic Method

Definition 1.1. The Ramsey number R(k, l) is the smallest integer n such that in any two-coloring of
the edges of a complete graph on n vertices Kn by red and blue, either there is a red Kk or there is a
blue Kl.

Proposition 1.2. If
(
n
k

)
∗21−(

k
2) < 1, then R(k, k) > n. Thus R(k, k) > ⌊2k/2⌋ for all k ≥ 3.

Proof: Consider a random two-coloring of the edges of Kn obtained by coloring each edge independently
either red or blue, where each color is equally likely. For any fixed set R of k vertices, let AR be the event that

the induced subgraph of Kn on R is monochromatic. Clearly, Pr[AR] = 21−(
k
2). Since there are

(
n
k

)
possible

choices for R, the probability that at least one of the events AR occurs is at most
(
n
k

)
21−(

k
2) < 1. Thus, with

a positive probability, no event AR occurs and there is a two-coloring of Kn without a monochromatic Kk,

that is R(k, k) > n. Since k ≥ 3 and we are taking n = ⌊2k/2⌋, then
(
n
k

)
21−(

k
2) < 21+

k
2

k!
nk

2k2/2
< 1. Therefore

R(k, k) > ⌊2k/2⌋ for all k ≥ 3. ■

1.2 Graph Theory

Definition 1.3. A tournament on a set V of n players is an orientation T = (V,E) of the edges
of the complete graph on the set of vertices V. Thus for every two distinct elements x, y ∈ V , either
(x, y)or(y, x) ∈ E but not both.
We also say that a tournament has a property Sk if for every set of k players, there is one that beats
them all.

Theorem 1.4. If
(
n
k

)
(1− 2−k)n−k < 1, then there is a tournament on n vertices that has the property

Sk

Proof: Consider a random tournament on the set V = {1, ..., }. For every fixed subset K of size k of V, let
AK be the event that there is no vertex that beats all the members of K. Clearly Pr[AK ] = (1 − 2−k)n−k.
This is because for every fixed vertex v ∈ V −K, the probability that v does not beat all the members of
K is 1− 2−k, and all these n− k events corresponding to the various possible choices of v are independent.
Thus is follows that Pr[AKforeveryKsubsetofV ] ≤

∑
K⊆V Pr[AK ] =

(
n
k

)
(1−2−k)n−k < 1. Therefore with

positive probability, no event AK occurs, that is, there is a tournament on n vertices that has the property
Sk. ■

Definition 1.5. A dominating set is a subset of vertices of a graph where every vertex is included in
the set or is adjacent to a vertex within the set.

Theorem 1.6. Let G = (V,E) be a graph on n vertices, with minimum degree δ > 1. Then G has a

dominating set of at most n 1+ln(δ+1)
δ+1 vertices.

Proof: Let p ∈ [0, 1] be, for the moment arbitrary. Let us pick randomly and independently each vertex
of V with probability p. Let X be the random set of all vertices picked at let Y = YX be the random set
of all vertices in V − X that do not have any neighbor in X. The expected value of |X| is clearly np. For
each fixed vertex v ∈ V , Pr[v ∈ Y ] = Pr[vanditsneighborsarenotinX] ≤ (1 − p)δ+1. Since the expected
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value of a sum of random variables is the sum of their expectations and since the random variable |Y | can
be written as a sum of n indicator random variables Xv where Xv = 1 if v ∈ Y and 0 otherwise, we conclude
that the expected value of |X| + |Y | is at most np + n(1 − p)δ+1. Consequently, here is at least one choice
of X ⊆ V such that |X| + |YX | ≤ np + n(1 − p)δ+1. The set U = X ∪ YX is clearly a dominating set
of G whose cardinality is at most this size. The above argument works for any arbitrary p in the above
interval. We shall now optimize the result using calculus to bound 1 − p ≤ e−p to give the simpler bound
|U | ≤ np + ne−p(δ+1). Take the derivative of the right side with respect to p and set it equal to zero. The

right hand side is minimized at p = ln(δ+1)
δ+1 . Thus we can then set p equal to this value and have now shown

that |U | ≤ n 1+ln(δ+1)
δ+1 ■

Definition 1.7. A cut in a graph G = (V,E) is a partition of the set of vertices V into two nonempty
disjoint sets V = V1 ∪ V2. If v1 ∈ V1 and v2 ∈ V2, we say that the cut separates v1, v2. The size of the
cut is number of edges of G having one end in V1 and the other in V2. In fact, we sometimes identify
the cut with the set of these edges. The edge connectivity of G is the minimum size of a cut of G.

Lemma 1.8. Let G = (V,E) be a graph with minimum degree δ, and let V = V1 ∪ V2 be a cut of size
smaller than δ in G. Then every dominating set U of G has vertices in V1 and in V2

Proof: Suppose this is false and U ⊆ V . Choose arbitrarily, a vertex v ∈ V2 and let v1, v2, ..., vδ be δ of its
neighbors. For each i ∈ {1, ..., δ}, define an edge ei of the given cut as follows. If vi ∈ V1, then ei = {v, vi},
otherwise vi ∈ V2, and since U is dominating, there is at least on vertex u ∈ U such that {u, v1} is an edge.
Take this u and put ei = {u, vi}. The δ edges e1, ..., eδ are all distinct and lie in the given cut, contradicting
the assumption that its size is less than δ. ■

1.3 Combinatorics

Definition 1.9. A hypergraph is a pair H = (V,E), where V is a finite set whose elements are called
vertices, and E is a family of subsets of V called edges. It is n-uniform if each of its edges contains
precisely n vertices. We say that H has property B, or that it is two-colorable, if there is a two-coloring
of V such that no edge is monochromatic. Let m(n) denote the minimum possible number of edges of
an n-uniform hypergraph that does not have property B.

Proposition 1.10. Every n-uniform hypergraph with less than 2n−1 edges has property B. Therefore
m(n) ≥ 21−n

Proof: Let H = (V,E) be an n-uniform hypergraph with less than 2n−1 edges. Color V randomly two
colors. For each edge e ∈ E, let Ae be the event such that e is monochromatic. Clearly, Pr[Ae] = 21−n.
This is because there are two monochromatic colors our edge can take and this edge connects to n vertices.
Therefore Pr[

⋃
e∈E Ae] ≤

∑
e∈E Pr[Ae] < 1 by Union Bound Inequality. Since our probability is less than

1, the event exists and thus there is a two-coloring without monochromatic edges. ■

Let us now try to find the best known upper bound for m(n). Let us fix V and pick v vertices in V.
Denote X to be a coloring of V which has ”a” points in one color and then ”b = v − a” points in a second
color. Let us then define the set S to be a uniformly random selection n points from V. We can then find the
probability that S is monochromatic under our coloring X. We can see that we have

(
v
n

)
total possibilities

of vertex colors for our set S as we are essentially choosing n points to color out of v total points and we
want every possible combination of these n points. We can see the portion of our ”n” points that are strictly
colored in our ”a” color is

(
a
n

)
because we want all possible combinations of choosing n vertices and they’re

all in the ”a” color. Similarly we can define
(
b
n

)
to be our second coloring. We can add these two together
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to get our true probability. Thus Pr[S is monochromatic in X] =
(an)+(

b
n)

(vn)
. For our sake of argument we

assume that v is an even amount of vertices.
(
y
n

)
is convex which we will use without proof. However, since

it is convex, we can see our probability is minimized at a = b. This is easy to see due to convexity. Thus

we can find a lower bound for our probability to be p =
2∗(v/2

n )
(vn)

. We next define Si to be uniformly and

independently determined sets just as we have for S. We do this for some ”m” such that we have S1, .., Sm

different sets. We now define AX to be the event that in which all of our sets are not monochromatic. We
can see that Pr[AX ] ≤ (1 − p)m. This is because a single AX is monochromatic with at least probability
p so the probability that none of them are monochromatic is simply (1 − p). Since we have done this ”m”
types, the probability is appropriately (1 − p)m. We have ”v” total vertices, each of which can take on a
different color. Thus there are a total of 2v different colors. We can see that Pr[V AX ] ≤ 2v(1−p)m. This is
an upper bound for this union because at most 2v of these coloring’s will be used in the unions of our AX

Theorem 1.11. m(n) < (1 + o(1)) eln(2)
4 n22n

Definition 1.12. Let F = {(Ai, Bi)}hi=1 be a family of pairs of subsets of an arbitrary set. We say that
F is a (k, l) system if |Ai| = k, |Bi| = l for all 1 ≤ i ≤ h, Ai ∩Bi = ∅, Ai ∩Bj ̸= ∅

Theorem 1.13. If F defined above is a (k-l) system, then h ≤
(
k+l
k

)
Proof: We first define X =

⋃h
i=1(Ai ∪ Bi) and take a random ordering of X denoted as π. For every union

of Ai, Bi in our big union, we let Xi to be the event that every element of Ai precede every element in Bi.
Pr[Xi] = 1/

(
k+l
k

)
. This number comes because we have a total of k+ l numbers. This is given to us as this is

a (k, l) system which means Ai, Bi have k and l elements respectively. We are also choosing k elements from
this set because we are choosing k elements and then filling the rest of the elements arbitrarily. Since only
one specific ordering has the order we want, it is easy to see our probability is correct. We can also prove
that Xi, Xj is pairwise disjoint with contradiction. Assume that they are not and that this is false. If the last
element of Ai comes before the last element of Aj , we see that Ai precedes all of Bj which is a contradiction

as by definition, a (k,l) system requires Ai ∩ Bj ̸= ∅. We see that Pr[VXi] =
∑h

i=1 Pr[Xi] = h/
(
k+l
k

)
. This

completes the proof as this is probability is less than 1 and therefore we can say that h ≤
(
k+1
k

)
■
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2 Exercises

2.1 9/27/24 Exercise

Consider the 3SAT problem. For any set of clauses, there exists an assignment that satisfies at least 7/8 of
the clauses.

Proof: Let us take a random sample of clauses. We know the probability of a clause being unsatisfiable
is 1/8 as we have 7 combinations of clauses that can satisfy given 3 variables and their negations. Since this
probability is nonzero, we have shown there exists an assignment that satisfies at least 7/8 of the clauses.

2.2 Chapter 1 Exercise 1

2.3 Chapter 1 Exercise 7

Theorem 2.1. Let {(Ai, Bi), 1 ≤ i ≤ h} be a family of pairs of subsets of the set of integers such that
|Ai| = k for all i and |Bi| = ℓ for all i, Ai ∩Bi = ∅, and (Ai ∩Bj) ∪ (Aj ∩Bi) ̸= ∅ for all i ̸= j. Prove
that h ≤ (k + ℓ)k+ℓ/(kkℓℓ).

Proof. We will randomly color the integers using k+ ℓ colors. Formally, we say that integer x has color π(x),
where π(x) is chosen uniformly at random from the set {1, . . . , k + ℓ}.

For each i, 1 ≤ i ≤ h, let Xi be the event that all the elements of Ai have colors from {1, . . . , k} and all
the elements of Bi have colors from {k + 1, . . . , ℓ}.

Lemma 2.2. The probability that event Xi happens is

Pr[Xi] =
kkℓℓ

(k + ℓ)k+ℓ
.

Proof. Let us create k + l bins, representing the elements in Ai ∪ Bi. We can see that there are (k + l)k+l

different ways to place a color in a bucket. However, we also know that there are kk ways to place the k
colors in A to the first k buckets and ll ways to place the l colors in B to the last l buckets. Thus we can see

the probability that event Xi happens is
kkll

(k+l)k+l

Lemma 2.3. The events Xi are disjoint.

Proof. Let us proceed by contradiction. If Xi, Xj were not disjoint, it means that Ai, Aj are colored from
the same colors and same with Bi, Bj which is a contradiction as the coloring of the elements must be done
drawn from a set so we cannot color two sets at the same time as we run out of colors.

It follows that

1 ≥ Pr[∨h
i=1Xi] =

h∑
i=1

Pr[Xi] = h · kkℓℓ

(k + ℓ)k+ℓ
.

Thus

h ≤ (k + ℓ)k+ℓ

(kkℓℓ)
,

completing the proof.
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3 Linearity of Expectation

3.1 Basics

Definition 3.1. Given random variables, X1, ..., Xn with X = c1X1 + ... + cnXn. The Linearity of
Expectation is E[X] = c1E[X1] + ...+ cnE[Xn]

Definition 3.2. A Hamiltonian Path is one that visits every vertex exactly once.

Theorem 3.3. There is a tournament T with n players and at least n!2−(n−1) Hamiltonian paths.

Proof. Let us create a random tournament and denote X to be the number of Hamiltonian paths of the
graph. Denote σ and Xσ to be the indicator random variable that there is a Hamiltonian path for a given
permutation. X =

∑
Xσ. There are n! different permutations that give a valid Hamiltonian path and there

are 2n−1 different permutations. Thus E[X] = n!/2n−1

3.2 Splitting Graphs

Theorem 3.4. Let G = (V,E), be a graph with n vertices and e edges. Then G contains a bipartite
subgraph with at least e/2 edges

Proof. Let T be a random subset of V given by Pr[x ∈ T ] = 1/2. Let B = V − T . Denote an edge to be
crossing if e = {x, y} and exactly one of x or y is in T. We then denote X to be the number of crossing edges.
X =

∑
Xxy where Xxy is an indicator variable denoting that an edge between x and y is crossing. Thus

E[Xxy] = 1/2. This is because there is a 1/2 chance that a given edge is crossing. Thus we can see that
E[X] =

∑
E[Xxy] = e/2

Theorem 3.5. If G has 2n vertices and e edges, then it contains a bipartite subgraph with at least
en/(2n − 1) edges. If G has 2n + 1 vertices and e edges, then it contains a bipartite subgraph with at
least e(n+ 1)/(2n+ 1) edges

Proof. When G has 2n vertices, we can let T be uniformly chosen from all n size subsets of V. Thus every
edge now has a probability n/(2n − 1) of being crossing. We can do the same thing for if G has 2n + 1
vertices.

Lemma 3.6. Let Pk denote the set of all homogeneous polynomials of degree k with all coefficients
having absolute value at most 1. For all f ∈ Pk there exist p1, .., pk ∈ [0, 1] with |f(p1, ..., pk)| ≥ ck

Proof. We set M(f) = max|f(p1, ..., pk)|. For every pk ∈ Pk, M(f) > 0 as f is not the zero polynomial.
Since Pk is compact we can see that M : Pk → R is continuous and ck must be the minimum.

3.3 Two Quickies

Theorem 3.7. There is a two-coloring of Kn with at most
(
n
a

)
21−(

n
a) monochromatic Ka

Proof. Let us create a random coloring of Kn. Define X to be the number of monochromatic Ka and find

E[X]. For some coloring, the value of X is at most this expectation. We can see that E[X] =
(
n
a

)
21−(

n
a).

This is because there are
(
n
a

)
different Ka and then each Ka has an expectation of 21−(

n
a).
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Theorem 3.8. There is a two-coloring of Km,n with at most
(
m
a

)(
n
b

)
21−ab monochromatic Ka,b

Proof. Take a random coloring of Km,n and define X to be the number of monochromatic Ka,b and find
E[X]. E[X] =

(
m
a

)(
n
b

)
21−ab. Similar reasoning to the above proof.

3.4 Balancing Vectors

Theorem 3.9. Let v1, ..., vn ∈ Rn, all |vi| = 1. Then there exist e1, ..., en ∈ −1, 1 so that |e1v1 + ...+
envn| ≤

√
n and also there exist e1, ..., en ∈ 1, 1 so that |e1v1 + ...+ envn| ≥

√
n

Proof. Let us select e1, ..., en uniformly and independently from −1, 1. Set X = |e1v1 + ... + envn|2. Then
we can see that X =

∑n
i=1

∑n
j=1 eiejvivj . We can therefore see that E[X] =

∑n
i=1

∑
j = 1nvivjE[eiej ]. We

can therefore simplify this to E[X] =
∑n

i=1 vivi = n. Thus we can take the square root of X to prove the
theorem.

Theorem 3.10. Let v1, ..., vn ∈ Rn, all |vi| ≤ 1. Let p1, ..., pn ∈ [0, 1] be arbitrary, and set w =

p1v1 + ...+ pnvn. Then there exist e1, ..., en ∈ 0, 1, so that setting v = e1v1 + ...+ envn. |w − v| ≤
√
n
2

Proof. Let us pick the ei independently with Pr[ei = 1] = pi and Pr[ei = 0] = 1 − pi. Define random
variable X = |w − v|2. Therefore we can see that X =

∑n
i=1

∑n
j=1 vivj(pi − ei)(pj − ej). Thus the

E[X] =
∑n

i=1

∑n
j=1 vivjE[(pi − ei)(pj − ej)]. If i ̸= j, our expectation is 0. If i = j, then our expectation is

equal to pi(pi − 1)2 + (1− pi)p
2
i ≤ 1

4 . We know that E[(pi − ei)
2] = V ar[ei]. This shows the expected value

of X is less than or equal to n
4
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4 Alterations

4.1 Combinatorial Geometry

Theorem 4.1. There is a set S of n points in the unit square U such that T (S) ≥ 1/(100n2)

4.2 Packing

Theorem 4.2. Let C be bounded, convex, and centrally symmetric around the origin. Then δ(C) ≥
2−d−1

Proof. Let P,Q be independently and randomly sampled from B(x) where B(x) is the cube [0, x]d of side
x. Consider the event (C + P ) ∩ (C + Q) ̸= ∅. This can only happen if there is some c1, c2 ∈ C such that
P −Q = c1 − c2 = 2 c1−c2

2 ∈ 2C by central symmetry and convexity. CONTINUE

4.3 Greedy Coloring

Corollary 4.3. m(n) = Ω(2n(n/ lnn)1/2)

Proof. Let us bound 1− p ≤ e−p. The function ke−pn + k2p is minimized at p = ln(n/k)/n. Thus we have
k2/n(1 + ln(n/k)) < 1.

Theorem 4.4. If there exists p ∈ [0, 1] with k(1− p)n + k2p < 1 then m(n) > 2n−1k
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5 The Second Moment

5.1 Basics

Definition 5.1. We define Variance for a random variable X to be V ar[X] = E[(X − E[X])2]

Theorem 5.2. Chebyshev’s Inequality states that for any positive λ, Pr[|X − µ| ≥ λσ] ≤ 1
λ2

Proof. σ2 = V ar[X] = E[(x− E[X])2 ≥ λ2σ2Pr[|X − µ| ≥ λσ]

Chebyshev’s essentially bounds how many data points are λ standard deviations away from the mean.

Definition 5.3. We define Covariance for two random variables X and Y to be Cov[X,Y ] = E[XY ]−
E[X]E[Y ]

5.2 Number Theory

Theorem 5.4. |v(x)− ln lnn| > ω(n)
√
ln lnn

Proof. Denote x to be randomly chosen from a set {1, ..., n}. Denote Xp to be 1 if p|x and 0 otherwise. Set

M = n1/10 and have X =
∑

Xp. E[Xp] =
n/p
p = 1/p+O(1/n). Thus we can see that E[X] = ln lnn+O(1)

using the fact that
∑

1/p = ln lnn. We know that V ar[X] =
∑

V ar[Xp] +
∑

Cov[Xp, Xq]. We know
V ar[Xp] = (1/p)(1− 1/p) so therefore V ar[Xp] = ln lnn+O(1). Cov[Xp, Xq] = E[Xp, Xq]−E[Xp]E[Xq] =
n/pq
n − n/p

n
n/q
n ≤ 1

n (
1
p + 1

q ). Thus
∑

Cov[Xp, Xq] ≤ 2M
n

∑
1
p ≤ O(n−9/10 ln lnn). Thus by Chebyshev’s we

have that Pr[|X − ln lnn| > λ
√
ln lnn] < λ−2 +O(n−9/10 ln lnn).

5.3 More Basics

Theorem 5.5. Pr[X = 0] ≤ V ar[X]
E[X]2

Proof. Set λ = µ/σ. We can then use Chebyshev’s Inequality to see that Pr[X = 0] ≤ Pr[|X − µ| ≥ λσ] ≤
σ2/µ2
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