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1 Brownian Motion

1.1 Motivation

Brownian motion allows us to mathematically justify the behavior of ran-
domized processes. By defining a mathematical function that makes use
of normal distributions to represent some quantitative measure of an ob-
ject, we are better suited to model and represent quantities which include
”randomized” measures. Our eventual goal comes back to a general dif-
ferential equation as shown in Oksendal’s Stochastic Differential Equations,
understanding an equation of the form

dX

dt
= b(t,Xt) + σ(t,Xt) · “noise”

Here, the differential equation is altered in the fact that it has some ran-
domized “noise” being added to the otherwise regular differential equation.

1.2 Definition

We define Brownian Motion as is explained in Lawrence C. Evans An Intro-
duction to Stochastic Differential Equations. A function B(t) is defined as
Brownian Motion if:

1. B(0) = 0. Essentially, the function should begin with no randomiza-
tion.

2. B(t)−B(s) has a normal distribution with mean 0 and variance t− s
given t ≥ s ≥ 0. There should be no expectation for the function to
predictably change.

3. For any partition of times (t1, t2, · · · , tn), the random variablesB(t1), B(t2)−
B(t1), B(t3)−B(t2), · · · , B(tn)−B(tn−1) should all be independent of
each-other. To encourage a fully randomized process, the increments
of the function should not be linked to each-other.

Proving that such a construction exists is necessary, but is not in the scope
of this review.
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2 Constructing the Ito Integral

2.1 Motivation

The eventual goal is to make sense of the aforementioned differential equa-
tion

dX

dt
= b(t,Xt) + σ(t,Xt) · “noise”

We might want to write this “noise” term as being represented by some
stochastic process St, giving us

dX

dt
= b(t,Xt) + σ(t,Xt) · St

We can treat the differential equation as being made up of discrete sums

Xk −Xk−1 = b(tk, Xk)∆tk + σ(tk, Xk)Sk∆tk

This Sk∆tk term can be represented by some ∆Vk, where Vk has stationary
independent increments at mean 0. Using Brownian motion as a sufficient
replacement for Vk, we then replace Sk∆tk with ∆Bk. We then get that

Xk = X0 +

k−1󰁛

j=0

b(tj , Xj)∆tj +

k−1󰁛

j=0

σ(tj , Xj)∆Bk

Which in integral form becomes

Xt = X0 +

󰁝 t

0
b(s,Xs) ds+

󰁝 t

0
σ(s,Xs) dBs

Now, the motivation of conducting the Ito integral comes in making sense
of this

󰁕 t
0 σ(s,Xs) dBs term.

2.2 What is the Ito Integral?

We generally find that this term has behaviors that do not necessarily make
sense given the classic definition of an integral. We take two different ap-
proximations of Bt(ω). We have

φ1(t,ω) =
󰁛

j≥0

Bj·2−n · χ[j·2−n,(j+1)·2−n)(t)

φ2(t,ω) =
󰁛

j≥0

B(j+1)·2−n · χ[j·2−n,(j+1)·2−n)(t)
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for χ being the characteristic function and n being some natural number.
Essentially, we have left and right side approximations of some Brownian
motion function Bj . Integrating over both of these gives

E[

󰁝 T

0
φ1(t,ω)dBt(ω)] =

󰁛

j≥0

E[Bj(Bj+1 −Bj)] = 0

The expected value comes out to 0 since we know Brownian motion has
independent increments. However, for φ2(t,ω), we have

E[

󰁝 T

0
φ2(t,ω)dBt(ω)] =

󰁛

j≥0

E[Bj+1(Bj+1−Bj)] =
󰁛

j≥0

E[(Bj+1−Bj)
2]+

󰁛

j≥0

E[Bj(Bj+1−Bj)]

=
󰁛

j≥0

E[(Bj+1 −Bj)
2] = T

The proof for this is as follows:
We know Bj+1−Bj has variance tj+1−tj = E((Bj+1−Bj)

2)−(E(Bj+1−
Bj))

2 = E((Bj+1−Bj)
2). Thus, we know

󰁓
j≥0E[(Bj+1−Bj)

2] =
󰁓

j≥0 tj+1−
tj = T .

This means that we need to determine some convention to confirm that
these integrals are well-defined. We decide to use the left-hand endpoint,
which we define as the Ito Integral.

2.3 Justification

The decision behind choosing the left endpoint is because its construction
can be classified as a martingale. A martingale Xt is defined as follows:

1. E[|Xt|] < ∞ for all t ≥ 0.

2. E[Xt| Us] = Xs for t ≥ s ≥ 0.

In this case, Us is the σ algebra generated by all X(a) for 0 ≤
a ≤ s, essentially the history of the process up to s. Given a left-
hand endpoint, we can be confident that E(

󰁕 t
0 σ(s,Xs) dBs| Ur) =󰁕 r

0 σ(s,Xs) dBs for t ≥ r ≥ 0, since each added point has expected
value 0 being multiplied by (Bj+1 −Bj).

The equation in higher dimensions works the exact, same, with
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B(t,ω) =

󰀳

󰁅󰁃
B1(t,ω)

...
Bn(t,ω)

󰀴

󰁆󰁄, u =

󰀳

󰁅󰁃
u1
...
un

󰀴

󰁆󰁄,

v =

󰀳

󰁅󰁃
v11 · · · v1m
...

. . .
...

vn1 · · · vnm

󰀴

󰁆󰁄, dB(t) =

󰀳

󰁅󰁃
dB1(t)

...
dBm(t)

󰀴

󰁆󰁄

We then have that dX(t) = udt+ vdB(t).

3 Existence

To prove that we have convergence for such a left-hand approximation, we
show that 󰁝 T

0
f(t,ω)dBt(ω) = lim

n→∞

󰁝 T

0
φn(t,ω)dBt(ω)

given that

E[

󰁝 T

0
(f(t,ω)− φn(t,ω))

2dBt(ω)] → 0

These φn(t,ω) are elementary, meaning they are representable as
󰁛

j

ej(ω) · χ[tj ,tj+1)(t)

We can then use these functions to approximate our original function, and
we can state the Ito Isometry for them, which is that

E[(

󰁝 T

0
φ(t,ω)dBt(ω))

2] = E[

󰁝 T

0
φ(t,ω)2dt]

The proof is because E[(
󰁕 T
0 φ(t,ω)dBt(ω))

2] =
󰁓

i,j E[eiej∆Bi∆Bj ] = E[e2j ·
(tj+1 − tj)] = E[

󰁕 T
0 φ2dt]

We can then use this isometry to state that if we have functions φn such
that

E[

󰁝 T

0
(f − φn)

2dt] → 0

then 󰁝 T

0
f(t,ω)dBt(ω) = lim

n→∞

󰁝 T

0
φn(t,ω)dBt(ω)

This is convergent, since
󰁕 T
0 φn(t,ω)dBt(ω) forms a Cauchy sequence, shown

by the Ito Isometry. From here, we can then even extend the Iso Isometry
to non-elementary functions.
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4 Ito Representation Theorem

We know that the Ito Integral acts as a sufficient martingale with respect
to the σ algebra generated to represent the history of the object up to
time t. The goal of this section is to prove that any square integrable has
a representation as an Ito integral. To put it in mathematically formal
terms, the Ito Representation Theorem states that if some function F ∈
L2(F (n)

T , P ) being the set of square integrable functions with history F (n)
T ,

then it has representation as F (ω) = E[F ] +
󰁕 T
0 f(t,ω) dB(t) for stochastic

process f(t,ω). The proof is as follows:

We want to show that any F ∈ L2(F (n)
T , P ) can be represented by a lin-

ear combination of functions of the sort exp{
󰁕 T
0 h(t)dBt(ω)− 1

2

󰁕 T
0 h2(t)dt},

where h(t) ∈ L2[0, T ]. Without going into full detail, Oksendal’s paper ex-
plains why these sorts of functions are expressable in terms of an Ito integral.

Now take some function Fn, expressed as a linear combination of func-
tions of the form exp{

󰁕 T
0 h(t)dBt(ω)− 1

2

󰁕 T
0 h2(t)dt}. We then know that

Fn(ω) = E[Fn] +

󰁝 T

0
fn(s,ω)dBs(ω)

The Ito Isometry states that for elementary function φ(t,ω) bounded, we
have

E[(

󰁝 T

0
φ(t,ω)dBt(ω))

2] = E[

󰁝 T

0
φ(t,ω)2dt]

This implies that

E[(Fn−Fm)2] = E[(E[Fn−Fm]+

󰁝 T

0
(fn−fm)dB)2] = E[Fn−Fm]2+

󰁝 T

0
E[(fn−fm)2]dB

However, as n,m → ∞, we know that (fn − fm)2 will have expected value
0, meaning that we have that fn is a Cauchy sequence and thus converges
to some f . Thus, we have

F = lim
n→∞

Fn = lim
n→∞

(E[Fn] +

󰁝 T

0
fndB) = E[F ] +

󰁝 T

0
fdB

Thus, we have a representation for function F . This representation will
actually be unique, but the proof will not be shown here.
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