Cauchy's Theorem in Group Theory

Carchy's Theorem establishes a useful connection between a group's order and the existence of elements of specific orders.

Theorem

If ^G is ^a finite group and ^p is ^a prime number dividing the order of ^G (denoted IGI), Then ^G contains an element of order p.

Some prelimanaries will be introduced :

(1.) order of an element

Is the order of an element $g \in G$ **is the smallest positive integer n** such that $g^n = e$, where e is the identity element of G. If no such n exists, a has infinite order.

(II.) group order

 $\overline{}$ Denoted as 1 GI, group order is the number of clements in a group G.

(III.) prime divisors

 \rightarrow A prime p divides G if there exists an integer κ such that $1G$ = kp

(IV.) action of groups

 $\overline{\mathsf{L}}$ if G acts on a set X, there exists a map $\mathsf{G}\times\mathsf{X}\longrightarrow\mathsf{X}$ (the action) such that for all g, h ϵ G and $x \in X$

(i) $e \cdot x = x$ where e is the identity element of G

<u>(ii) (gh) x = g · (h · x)</u>

Is the action respects the group operation

Necessary results

Theorem (Lagrange's If ^G is ^a finite group and ^H is ^a subgroup , then IHI divides IGI

Theorem (Orbit-Stabilizer)

 IF G is a group acting on a set X and xeX , then

 $|G| = |O(x)| \cdot |S(x)|$

where $O(x)$ denotes the orbit of an element x , the set of all elements in x that can be reached from ^x by the action of any element in G.

and $S(x)$ denotes the stabilizer of an element x , the set of all elements in G that leave X alone under the action

Definition (cyclic subgroups) ^A cyclic subgroup of group ^G is ^a subgroup generated by ^a single element. In other words , if ge ^G , then the cyclic subgroup generated by ^g is the set $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$

If the order of g is p, then $\langle g \rangle$ consists of the elements $\{ \xi e, g_1, ..., g^{p-1} \}$

Finally, we prove the result.

Proof (Cauchy's Theorem) Let G be a finite group with order n . G be a finite group with order n.
p be a prime such that pln , i.e. p divides n. $We'll aim to show G contains an element of order p .$ Define a set X consisting of all subsets of G containing p elements. $X = \{ A \subseteq G \mid |A| = p \}$ The size of this set is the number of ways to choose pelements from ⁿ , namely, $|X| = {n \choose p} = \frac{n(n-1)...(n-p+1)}{p}$ p ! This is obviously finite.

Now define a group action of ^G on the set ^X by left multiplication.

Specifically, for g.e.G. and $A \in X$, we have

 $g - A = \{g - \mid a \in A\}$

That is , ^g acts on subset ^A by multiplying each of its elements from the left by g. ^A quick observation reveals , this action preserves IAI We now apply the Orbit-Stabilizer Theorem.

By it , the size of the orbit of ^A is given by

 $|O(A)| = \frac{|G|}{|S(A)|}$

Since p divides IGI, we know from Lagrange's Theorem that the size of the orbit of any subset ^A must be ^a divisor of IGI .

This implies one of the orbits has size p, since p divides IGI.

If the size of an orbit is exactly p, the elements of it correspond to a cyclic subgroup of G of order p. Specifically , there exists ge ^G such that the orbit of Ee3 under the action of ^G consists of the elements $\{e, g, g^2, \dots, g^{p-1}\}.$ This orbit is cyclic, and g has order p, meaning g^{p} = e and $g^{k} \neq e$ for $k < p$ Thus, the group G contains an element q of order p, as desired. El