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Gravitational instantons

Definition

(X4, g) is a gravitational instanton if g is complete,
Hol(g) ⊂ SU(2), and

∫
X |Rm|

2dVg <∞.

• Hol(g) ⊂ SU(2) called “Calabi-Yau” ⇐⇒ X is a Kähler
manifold and the canonical bundle KX trivial.

• Hol(g) ⊂ Sp(1) called “hyperkähler” ⇐⇒ ∃ complex
structures I, J,K such that g is Kähler with respect to

aI + bJ + cK, a2 + b2 + c2 = 1,

an S2s worth of complex structures.

• Since Sp(1) = SU(2) these are equivalent.
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Ricci-flatness

Why “gravitational instanton”?

• Calabi-Yau =⇒ ∃ parallel (2, 0)-form Ω = ωJ + iωK .

• Since Λ2
+ = Rω ⊕ (Λ2,0 ⊕ Λ0,2)R =⇒ Λ2

+ is flat.

• The curvature of Λ2
+ is given by

0 = R(Λ2
+) =

(
W+ + (R/12)Id Ric− (R/4)g

)
In particular, Ric ≡ 0,W+ ≡ 0, and ∗Rg = −Rg∗.

• The “gravitational” terminology arises from the analogy with
general relativity, and the “instanton” terminology arises from
the analogy with ASD Yang-Mills connections.
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Ricci-flatness

A few remarks:

• Ricci-flat Kähler: still have ∗RX = −RX∗, but more general.

• Ricci-flat Kähler and π1(X) = {e} =⇒ hyperkähler.

• ∃ isometric quotients of hyperkähler which are “only”
Ricci-flat Kähler (e.g., finite quotients of ALE Ak metrics).

• There are some hyperkähler examples which are not simply
connected (e.g., R× T 3, Atiyah-Hitchin on S4 \ RP2, ALH∗

on CP2 \ T 2 or S2 × S2 \ T 2).

• Could require only the Ricci-flat condition. But there are not
many known examples which are not Kähler (e.g., Euclidean
Schwarzschild or Euclidean Kerr on R2× S2, Page’s Taub-bolt
on CP2 \ {p} = OP1(−1), Biquard-Minerbe ALH example).
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ALE gravitational instantons

Definition

(X, g) is ALE if

g = gR4/Γ +O(r−δ)

as r →∞, Γ ⊂ SO(4).
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ALE gravitational instantons

Remarks:

• Example: Eguchi-Hanson metric, |Γ| = 2, X = T ∗S2. More
generally, examples of type Ak (multi-Eguchi-Hanson), Dk,
E6, E7, E8 (classified by Kronheimer).

• V ol(B(p, r)) ∼ r4.

• Tangent cone at infinity: R4/Γ.

• |Rm| = O(r−6), can choose δ ≥ 4 (Bando-Kasue-Nakajima).
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ALF gravitational instantons

Definition

(X, g) is ALF if

g = dr2 + r2(π∗gS2) + θ2 +O(r−δ)

as r →∞, where π : S3 → S2 is the Hopf fibration, and θ is a
connection form. Can also take quotients by Zk in the fiber
direction, and also replace S2 by RP2.

• Examples: Taub-Nut metric on C2 (see LeBrun). More
generally, examples of type ALF-Ak (multi-Taub-NUT) and
ALF-Dk (Cherkis-Hitchin-Kapustin).

• V ol(B(p, r)) ∼ r3, tangent cone at infinity: R3 or R3/{±1}.
• |Rm| = O(r−3), can choose δ < 1 (Minerbe, Chen-Chen).

Classified by Chen-Chen.
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Elliptic Fibrations

Elliptic surface: π : X → C, holomorphic, with generic fiber
genus 1. Let S = {p1, . . . , pk} be the image of the singular fibers.
Kodaira’s fundamental invariants:

• Monodromy: ρ : π1(C \ S)→ SL(2,Z).

• Periods: τ : C \ S → H (multivalued), Functional invariant:
j : C \ S → P1. (Determines the complex structure of smooth
fibers).

• Compatibility: along a closed arc γ : S1 → C, any
single-valued lifting of τ transforms by the corresponding
monodromy matrix, up to ±1.
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Singular fibers

We consider only the cases there are no multiple fibers, and all
fibers are minimal. Singular fibers are classified by Kodaira:

• Ib, b ≥ 1, ρ(γ) =

(
1 b
0 1

)
, j has a pole of order b at p.

• I∗b , b ≥ 1, ρ(γ) =

(
−1 −b
0 −1

)
, j has a pole of order b at p.

• Finite monodromy: I∗0 , II, III, IV, II
∗, III∗, IV∗,

j(0) = α, 0, 1, 0, 0, 1, 0 respectively, α ∈ C.
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ALG gravitational instantons

Define

gβ,τ = gEuc + gτ

on C(0, 2πβ)× T 2, where

C(0, 2πβ) = {z ∈ C∗ | 0 < Arg(z) < 2πβ},

gτ is a flat metric on T 2, parametrized by τ ∈ H.

Definition

(X, g) is ALG if on a dense subset,

g = gβ,τ +O(r−δ), r →∞.
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ALG gravitational instantons

Remarks:

• Examples arise from any rational elliptic surface

Σ = Blp1,...,p9P2 π−→ P1,

and X = Σ \D, where D is a finite monodromy fiber (Hein).

Type I∗0 II∗ III∗ IV∗ II III IV
β 1

2
5
6

3
4

2
3

1
6

1
4

1
3

τ any ζ3 i ζ3 ζ3 i ζ3

• The sector in the ALG definition is “closed up” by the
monodromy around the singular fiber.

• V ol(B(p, r)) ∼ r2, tangent cone at infinity: C(2πβ).

• Rm = O(r−2−ε), classified by Chen-Chen.
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ALG∗ gravitational instantons

Let b = 2ν, V = b
2π log(r), and

gb = V (dr2 + r2dθ2
1 + dθ2

2) + V −1dθ2
3

where {dθ1, dθ2, dθ3} is a left-invariant coframe on a Heisenberg
nilmanifold Nil3b , which is an S1 bundle over T 2 of degree b,

S1 // Nil3b
π // T 2 ,

such that dθ3 is a connection form satisfying dθ3 = b
2πdθ1 ∧ dθ2.

Let g̃ν denote the metric on the Z2 quotient by the action

(θ1, θ2, θ3) 7→ (θ1 + π,−θ2,−θ3).

Cross section is an infranilmanifold.
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ALG∗ gravitational instantons

Definition

(X, g) is ALG∗ if g = g̃ν +O(r−δ), r →∞.

• Examples arise from rational elliptic surfaces Σ: X = Σ \D,
where D is a singular fiber of type I∗ν , 1 ≤ ν ≤ 4 (Hein).

• V ol(B(p, r)) ∼ r2.

• Tangent cone at infinity: R2/{±1}.

• Rm = O(r−2(log(r))−1), as r →∞.
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ALH gravitational instantons

Definition

(X, g) is ALH if

g = dr2 + gT 3 +O(r−ε), r →∞,

where gT 3 is a flat metric on T 3.

• Examples arise from rational elliptic surfaces Σ: X = Σ \ T 2,
where T 2 is a smooth fiber (Hein).

• V ol(B(p, r)) ∼ r.

• Tangent cone at infinity: R+ (unless X = R× T 3).

• |Rm| = O(e−δr), classified by Chen-Chen.
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ALH∗ gravitational instantons

Define

gb = dr2 + r2/3π∗gT 2 + r−2/3θ2
b ,

where θb is a connection form on Nil3b , which is an S1 bundle over
T 2 of degree b:

S1 // Nil3b
π // T 2

satisfying dθb = 2πbA−1dVT 2 .

Definition

(X, g) is ALH∗ if g = gb +O(e−δr
2/3

), as r →∞.
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ALH∗ gravitational instantons

The red circles represent the S1 fibers, the blue curves represent
the T 2s. In terms of distance to a basepoint,

diam(Nil3b (r)) ∼ r1/3, diam(S1(r)) ∼ r−1/3.
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ALH∗ gravitational instantons

Remarks:

• Examples arise from rational elliptic surfaces Σ: X = Σ \D,
where D is a singular fiber of type Ib, 1 ≤ b ≤ 9.

• V ol(B(p, r) = O(r4/3) as r →∞.

• Tangent cone at infinity: R+.

• |Rm| = O(r−2) as r →∞, but not any better.
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K3 surfaces

If X is compact complex surface which is simply connected and
has c1(X) = 0 then X is diffeomorphic to

K3 = {z4
0 + z4

1 + z4
2 + z2

3 = 0} ⊂ P3.

By Yau’s Theorem, every Kähler class for every complex structure
admits hyperkähler metrics.

dimR(M(K3)) = 58, 40 for complex structures, 20 for Kähler
classes, but subtract 2 since metric is hyperkähler.

It is known that

M(K3) = Γ\SO◦(3, 19)/SO(3)× SO(19),

where Γ is a discrete arithmetic subgroup. (Note this description
includes orbifold K3 Einstein metrics).
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General theory

What happens near the boundary?

• Ric(gj) = 0 =⇒ Gromov-Hausdorff limit.

• Singularity formation =⇒ curvature blows up.

• Bubbling phenomena: non-collapsed rescaled limits are
gravitational instantons.

• Volume non-collapsing: V ol(Bpj (1)) > v0 > 0 =⇒ orbifold
limit.

• Volume collapsing V ol(Bpj (1))→ 0 =⇒ lower-dimensional
limit.

Theorem (Cheeger-Tian)

Sequence collapses with uniformly bounded curvature away from
finitely many points.
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ALE bubbles

Recall: (X, g) is ALE if

g = gR4/Γ +O(r−δ)

as r →∞, Γ ⊂ SO(4).

Kummer surface: 4-dim limit = T 4/Z2, with flat metric. At 16
singular points, Eguchi-Hanson metric on OP1(−2) bubbles off.

→
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ALF bubbles

Recall: (X, g) is ALF if

g = dr2 + r2(π∗gS2) + θ2 +O(r−δ)

as r →∞, where π : S3 → S2 is the Hopf fibration, and θ is a
connection form (or RP2).

Foscolo: modified Kummer construction, 3-dim limit = T 3/Z2,
with flat metric. At 8 singular points, ALF D2 metrics bubble off.
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ALH bubbles

Recall: (X, g) is ALH if

g = dr2 + gT 3 +O(e−δr).

as r →∞, with V ol(B(p, r)) ∼ r.

Chen-Chen: 1-dim limit = [0, 1]. Singular points at 0, 1. Interior:
collapse with uniformly bounded curvature, uniform shrinking of
flat T 3.

Produced by gluing together 2 ALH factors with a long cylindrical
region in between, using earlier ideas of Kovalev-Singer, Floer.
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Tian-Yau metrics

Let DPb be a degree 1 ≤ b ≤ 9 del Pezzo surface. Let T 2 ⊂ DPb
be a smooth anticanonical divisor.

Theorem (Tian-Yau)

Xb = DPb \ T 2 admits a complete Ricci-flat Kähler metric, which
is asymptotic to a Calabi ansatz metric on a punctured disc bundle
in NT 2 .

Solution of the form ωg = i
2π

{
∂∂(− log ‖S‖2)

3
2 + ∂∂φ

}
.

We would like to “glue” two of these spaces together, but the
asymptotic geometry is not cylindrical: need to find appropriate
neck region.
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Tian-Yau metrics are ALH∗

Theorem (Hein-Sun-V-Zhang)

A Tian-Yau metric on Xb = DPb \ T 2 is ALH∗, with

g = gb +O(e−δr
2/3

)

as r →∞, for some δ > 0.

The proof relies on finding improved asymptotics for the complex
structure, and then using techniques in Hein’s thesis and Tian-Yau.
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Hein-Sun-V-Zhang

Theorem (HSVZ)

Given integers 1 ≤ b± ≤ 9, there is a family of hyperkähler metrics
gβ on a K3 surface which collapse to an interval [0, 1],

(K3, gβ)
GH−−→ ([0, 1], dt2), β →∞,

with the following properties:

• The “bubbles” at the endpoints are Tian-Yau metrics on del
Pezzo surfaces of degree b± minus an anticanonical elliptic
curve.

• In the interior region, there are b+ + b− Taub-NUT bubbles.
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K3, illustrated
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Xb− Xb+
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0 1/2 1

Figure: The vertical arrows represent collapsing to a one-dimensional
interval. The red circles represent the S1 fibers, the blue curves represent
the T 2 directions, and the ×s are Taub-NUT metrics.
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Hein-Sun-V-Zhang

Remarks on HSVZ:

• Neck region is produced using the Gibbons-Hawking ansatz
over T 2 × R, and a harmonic function which is asymptotically
linear in z on each end, and with b+ + b− monopole points in
the interior.

• Produced using technique of gluing hyperkähler triples,
introduced by Donaldson, and also used in Foscolo’s work.

• In the regular collapsing regions, nilmanifold collapsing occurs:
the T 2 directions and the S1 directions shrink at different
rates

diam(Nil3b ) ∼ β−1, diam(S1) ∼ β−2.
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Elliptic K3 surfaces

Remarks:

• Gross-Wilson: Case of elliptic K3 with 24 fibers of type I1

(nodal cubics). 2-dim limit = S2. Away from 24 singular
points, sequence collapses with uniformly bounded curvature,
with T 2-fibers being uniformly scaled down.
Gross-Tosatti-Zhang: any elliptic K3, GH limit is S2.
Odaka-Oshima made further progress. Bubbles?

• In joint work with Gao Chen and Ruobing Zhang, we show it
is possible to generalize Gross-Wilson to any elliptically fibered
K3 surface (24 I1 fibers is the generic case) AND understand
the behavior near the singular fibers. In particular, in the
Gross-Wilson case, we can show that at the 24 singular
points, Taub-NUT ALF metrics bubble off.
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Chen-V-Zhang

Theorem (Chen-V-Zhang)

For any elliptic K3 surface π : X → P1, there exists a family of
Ricci-flat Kähler metrics gε on X such that:

• The area of a regular fiber is ε, and (X, gε)
GH−→ (S2, gMcLean)

as ε→ 0.

• Near singular fibers with finite monodromy, bubbles are ALG
gravitational instantons.

• Near singular fibers with infinite monodromy, there are b
Taub-NUT bubbles in the Ib case and b Taub-NUT bubbles
plus 4 Eguchi-Hanson bubbles in the I∗b case.
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Greene-Shapere-Vafa-Yau semi-flat metric

Let π : X → P1 be an elliptic K3 surface with a holomorphic
section.

Fix a non-vanishing holomorphic 2-form Ω on X, for any small
enough disc E ⊂ P1 \ S, for any fixed holomorphic coordinate y on
E, there exists a unique local coordinate x ∈ C/(Zτ1(y)⊕ Zτ2(y))
such that Ω = dx ∧ dy locally on X|E .

Write

x = x1τ1(y) + x2τ2(y), x1, x2 ∈ R/Z,

and define

ωsf
δ = δ2 · dx1 ∧ dx2 +

√
−1

2
· Im(τ̄1τ2)dy ∧ dȳ︸ ︷︷ ︸
gMcLean

.
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Resolving the singularities

The semi-flat metric is singular near the singular fibers. To resolve:

• Finite monodromy fibers: the asymptotics of the dual
isotrivial ALG metrics agree with the asymptotics of the
semi-flat metric near the fibers with finite monodromy, so we
can glue these onto the semi-flat metric near these fibers.

• Infinite monodromy fibers: glue in an incomplete
“multi-Ooguri-Vafa metric” in the Ib case, or a
multi-Ooguri-Vafa metric with 2b monopole points modulo a
Z2 action in the I∗b case (and 4 Eguchi-Hanson metrics to
resolve the 4 ODP).
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Work in progress

Theorem (Chen-V-Zhang)

For any elliptic K3 surface π : X → P1, there exists a family of
Ricci-flat Kähler metrics gε on X such that:

• Near singular fibers of of type I∗b , 0 ≤ b ≤ 14, given any
integer 0 ≤ ν ≤ 4 there can be an ALG∗

ν gravitational
instanton bubble plus b+ ν Taub-NUT bubbles.

We cannot do this with a fixed complex structure. The idea is
similar to HSVZ: use a Gibbons-Hawking ansatz over R2 × S1 with
a suitable harmonic function, we can construct a neck region which
interpolates between the semi-flat metric near the I∗b fiber and the
ALG∗

ν bubble.
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Summary

In summary, the known GH limits and bubbles arising from
sequences of Ricci-flat metrics on the K3 surface:

Type Vol(B(p,r)) Case G-H limit

ALE ∼ r4 Kummer T 4/Z2

ALF ∼ r3 Foscolo T 3/Z2

ALG ∼ r2 Chen-V-Zhang S2

ALG∗
ν , 1 ≤ ν ≤ 4 ∼ r2 Chen-V-Zhang S2

ALH ∼ r Chen-Chen [0, 1]

ALH∗
b , 1 ≤ b ≤ 9 ∼ r

4
3 HSVZ [0, 1]

Question

Are there any other possible collapsed GH limits?

Question

Are there any other possible gravitational instanton bubbles?
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End

Thank you for your attention.
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