Gravitational instantons and K3 surfaces

Jeff Viaclovsky

University of California, Irvine

August 5, 2020

Pacific Rim Conference in Mathematics Differential Geometry Section

Gravitational instantons

Definition

 (X^4,g) is a gravitational instanton if g is complete, $\operatorname{Hol}(g)\subset\operatorname{SU}(2),$ and $\int_X|Rm|^2dV_q<\infty.$

- $\operatorname{Hol}(g) \subset \operatorname{SU}(2)$ called "Calabi-Yau" $\iff X$ is a Kähler manifold and the canonical bundle K_X trivial.
- $\operatorname{Hol}(g) \subset \operatorname{Sp}(1)$ called "hyperkähler" $\iff \exists$ complex structures I,J,K such that g is Kähler with respect to

$$aI + bJ + cK$$
, $a^2 + b^2 + c^2 = 1$,

an S^2 s worth of complex structures.

• Since Sp(1) = SU(2) these are equivalent.

Ricci-flatness

Why "gravitational instanton"?

- Calabi-Yau $\Longrightarrow \exists$ parallel (2,0)-form $\Omega = \omega_J + i\omega_K$.
- Since $\Lambda^2_+=\mathbb{R}\omega\oplus(\Lambda^{2,0}\oplus\Lambda^{0,2})_\mathbb{R}\Longrightarrow\Lambda^2_+$ is flat.
- The curvature of Λ^2_+ is given by

$$0 = \mathcal{R}(\Lambda_{+}^{2}) = (W^{+} + (R/12)Id \quad Ric - (R/4)g)$$

In particular, $Ric \equiv 0, W^+ \equiv 0$, and $*\mathcal{R}_g = -\mathcal{R}_g*$.

 The "gravitational" terminology arises from the analogy with general relativity, and the "instanton" terminology arises from the analogy with ASD Yang-Mills connections.

Ricci-flatness

A few remarks:

- Ricci-flat Kähler: still have $*\mathcal{R}_X = -\mathcal{R}_X*$, but more general.
- Ricci-flat Kähler and $\pi_1(X) = \{e\} \Longrightarrow$ hyperkähler.
- \exists isometric quotients of hyperkähler which are "only" Ricci-flat Kähler (e.g., finite quotients of ALE A_k metrics).
- There are some hyperkähler examples which are not simply connected (e.g., $\mathbb{R} \times T^3$, Atiyah-Hitchin on $S^4 \setminus \mathbb{RP}^2$, ALH* on $\mathbb{CP}^2 \setminus T^2$ or $S^2 \times S^2 \setminus T^2$).
- Could require only the Ricci-flat condition. But there are not many known examples which are not Kähler (e.g., Euclidean Schwarzschild or Euclidean Kerr on $\mathbb{R}^2 \times S^2$, Page's Taub-bolt on $\mathbb{CP}^2 \setminus \{p\} = \mathcal{O}_{\mathbb{P}^1}(-1)$, Biquard-Minerbe ALH example).

ALE gravitational instantons

Definition

(X,g) is ALE if

$$g = g_{\mathbb{R}^4/\Gamma} + O(r^{-\delta})$$

as $r \to \infty$, $\Gamma \subset SO(4)$.

ALE gravitational instantons

Remarks:

- Example: Eguchi-Hanson metric, $|\Gamma|=2$, $X=T^*S^2$. More generally, examples of type A_k (multi-Eguchi-Hanson), D_k , E_6, E_7, E_8 (classified by Kronheimer).
- $Vol(B(p,r)) \sim r^4$.
- Tangent cone at infinity: \mathbb{R}^4/Γ .
- $|Rm| = O(r^{-6})$, can choose $\delta \ge 4$ (Bando-Kasue-Nakajima).

ALF gravitational instantons

Definition

(X,g) is ALF if

$$g = dr^2 + r^2(\pi^* g_{S^2}) + \theta^2 + O(r^{-\delta})$$

as $r \to \infty$, where $\pi: S^3 \to S^2$ is the Hopf fibration, and θ is a connection form. Can also take quotients by \mathbb{Z}_k in the fiber direction, and also replace S^2 by \mathbb{RP}^2 .

- Examples: Taub-Nut metric on \mathbb{C}^2 (see LeBrun). More generally, examples of type ALF- A_k (multi-Taub-NUT) and ALF- D_k (Cherkis-Hitchin-Kapustin).
- $Vol(B(p,r)) \sim r^3$, tangent cone at infinity: \mathbb{R}^3 or $\mathbb{R}^3/\{\pm 1\}$.
- $|Rm| = O(r^{-3})$, can choose $\delta < 1$ (Minerbe, Chen-Chen). Classified by Chen-Chen.

Elliptic Fibrations

Elliptic surface: $\pi: X \to C$, holomorphic, with generic fiber genus 1. Let $S = \{p_1, \dots, p_k\}$ be the image of the singular fibers. Kodaira's fundamental invariants:

- Monodromy: $\rho: \pi_1(C \setminus S) \to SL(2, \mathbb{Z})$.
- Periods: $\tau: C \setminus S \to \mathbb{H}$ (multivalued), Functional invariant: $j: C \setminus S \to \mathbb{P}^1$. (Determines the complex structure of smooth fibers).
- Compatibility: along a closed arc $\gamma:S^1\to C$, any single-valued lifting of τ transforms by the corresponding monodromy matrix, up to ± 1 .

Singular fibers

We consider only the cases there are no multiple fibers, and all fibers are minimal. Singular fibers are classified by Kodaira:

- $\bullet \ \ {\rm I}_b, b \geq 1, \rho(\gamma) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, j \ \ {\rm has \ a \ pole \ of \ order} \ b \ \ {\rm at} \ \ p.$
- $\mathbf{I}_b^*, b \geq 1, \rho(\gamma) = \begin{pmatrix} -1 & -b \\ 0 & -1 \end{pmatrix}, j$ has a pole of order b at p.
- Finite monodromy: I_0^* , II, III, IV, II*, III*, IV*, $j(0)=\alpha,0,1,0,0,1,0$ respectively, $\alpha\in\mathbb{C}$.

ALG gravitational instantons

Define

$$g_{\beta,\tau} = g_{Euc} + g_{\tau}$$

on $C(0,2\pi\beta)\times T^2$, where

$$C(0, 2\pi\beta) = \{ z \in \mathbb{C}^* \mid 0 < Arg(z) < 2\pi\beta \},$$

 g_{τ} is a flat metric on T^2 , parametrized by $\tau \in \mathbb{H}$.

Definition

(X,g) is ALG if on a dense subset,

$$g = g_{\beta,\tau} + O(r^{-\delta}), \quad r \to \infty.$$

ALG gravitational instantons

Remarks:

Examples arise from any rational elliptic surface

$$\Sigma = Bl_{p_1,\dots,p_9} \mathbb{P}^2 \xrightarrow{\pi} \mathbb{P}^1,$$

and $X = \Sigma \setminus D$, where D is a finite monodromy fiber (Hein).

Туре	I_0^*	II^*	III^*	IV^*	II	III	IV
β	$\frac{1}{2}$	$\frac{5}{6}$	$\frac{3}{4}$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$
τ	any	ζ_3	i	ζ_3	ζ_3	i	ζ_3

- The sector in the ALG definition is "closed up" by the monodromy around the singular fiber.
- $Vol(B(p,r)) \sim r^2$, tangent cone at infinity: $C(2\pi\beta)$.
- $Rm = O(r^{-2-\epsilon})$, classified by Chen-Chen.

ALG* gravitational instantons

Let
$$b=2\nu$$
, $V=\frac{b}{2\pi}\log(r)$, and

$$g_b = V(dr^2 + r^2d\theta_1^2 + d\theta_2^2) + V^{-1}d\theta_3^2$$

where $\{d\theta_1, d\theta_2, d\theta_3\}$ is a left-invariant coframe on a Heisenberg nilmanifold Nil_b^3 , which is an S^1 bundle over T^2 of degree b,

$$S^1 \longrightarrow Nil_b^3 \xrightarrow{\pi} T^2$$
,

such that $d\theta_3$ is a connection form satisfying $d\theta_3 = \frac{b}{2\pi} d\theta_1 \wedge d\theta_2$.

Let $ilde{g}_{
u}$ denote the metric on the \mathbb{Z}_2 quotient by the action

$$(\theta_1, \theta_2, \theta_3) \mapsto (\theta_1 + \pi, -\theta_2, -\theta_3).$$

Cross section is an infranilmanifold.

Definition

Gravitational instantons

000000000000000

$$(X,g)$$
 is ALG* if $g = \tilde{g}_{\nu} + O(r^{-\delta}), r \to \infty$.

- Examples arise from rational elliptic surfaces Σ : $X = \Sigma \setminus D$, where D is a singular fiber of type I_{ν}^* , $1 \le \nu \le 4$ (Hein).
- $Vol(B(p,r)) \sim r^2$.
- Tangent cone at infinity: $\mathbb{R}^2/\{\pm 1\}$.
- $Rm = O(r^{-2}(\log(r))^{-1})$, as $r \to \infty$.

ALH gravitational instantons

Definition

(X,g) is ALH if

$$g = dr^2 + g_{T^3} + O(r^{-\epsilon}), \ r \to \infty,$$

where g_{T^3} is a flat metric on T^3 .

- Examples arise from rational elliptic surfaces Σ : $X = \Sigma \setminus T^2$, where T^2 is a smooth fiber (Hein).
- $Vol(B(p,r)) \sim r$.
- Tangent cone at infinity: \mathbb{R}_+ (unless $X = \mathbb{R} \times T^3$).
- $|Rm| = O(e^{-\delta r})$, classified by Chen-Chen.

ALH* gravitational instantons

Define

$$g_b = dr^2 + r^{2/3}\pi^*g_{T^2} + r^{-2/3}\theta_b^2,$$

where θ_b is a connection form on Nil_b^3 , which is an S^1 bundle over T^2 of degree b:

$$S^1 \longrightarrow Nil_b^3 \stackrel{\pi}{\longrightarrow} T^2$$

satisfying $d\theta_b = 2\pi bA^{-1}dV_{T^2}$.

Definition

$$(X,g)$$
 is ALH* if $g=g_b+O(e^{-\delta r^{2/3}})$, as $r\to\infty$.

ALH* gravitational instantons

The red circles represent the S^1 fibers, the blue curves represent the T^2 s. In terms of distance to a basepoint,

$$\operatorname{diam}(Nil_b^3(r)) \sim r^{1/3}, \quad \operatorname{diam}(S^1(r)) \sim r^{-1/3}.$$

ALH* gravitational instantons

Remarks:

- Examples arise from rational elliptic surfaces Σ : $X = \Sigma \setminus D$, where D is a singular fiber of type I_b , $1 \le b \le 9$.
- $Vol(B(p,r) = O(r^{4/3})$ as $r \to \infty$.
- Tangent cone at infinity: \mathbb{R}_+ .
- $|Rm| = O(r^{-2})$ as $r \to \infty$, but not any better.

K3 surfaces

If X is compact complex surface which is simply connected and has $c_1(X)=0$ then X is diffeomorphic to

$$K3 = \{z_0^4 + z_1^4 + z_2^4 + z_3^2 = 0\} \subset \mathbb{P}^3.$$

By Yau's Theorem, every Kähler class for every complex structure admits hyperkähler metrics.

 $\dim_{\mathbb{R}}(\mathcal{M}(K3)) = 58$, 40 for complex structures, 20 for Kähler classes, but subtract 2 since metric is hyperkähler.

It is known that

$$\mathcal{M}(K3) = \Gamma \backslash SO_{\circ}(3, 19) / SO(3) \times SO(19),$$

where Γ is a discrete arithmetic subgroup. (Note this description includes orbifold K3 Einstein metrics).

General theory

What happens near the boundary?

- $Ric(g_j) = 0 \Longrightarrow$ Gromov-Hausdorff limit.
- Singularity formation ⇒ curvature blows up.
- Bubbling phenomena: non-collapsed rescaled limits are gravitational instantons.
- Volume non-collapsing: $Vol(B_{p_j}(1)) > v_0 > 0 \Longrightarrow$ orbifold limit.
- Volume collapsing $Vol(B_{p_j}(1)) \to 0 \Longrightarrow$ lower-dimensional limit.

Theorem (Cheeger-Tian)

Sequence collapses with uniformly bounded curvature away from finitely many points.

ALE bubbles

Recall: (X,g) is ALE if

$$g = g_{\mathbb{R}^4/\Gamma} + O(r^{-\delta})$$

as $r \to \infty$, $\Gamma \subset SO(4)$.

Kummer surface: 4-dim limit $=T^4/\mathbb{Z}_2$, with flat metric. At 16 singular points, Eguchi-Hanson metric on $\mathcal{O}_{\mathbb{P}^1}(-2)$ bubbles off.

ALF bubbles

Recall: (X, g) is ALF if

$$g = dr^2 + r^2(\pi^* g_{S^2}) + \theta^2 + O(r^{-\delta})$$

as $r \to \infty$, where $\pi: S^3 \to S^2$ is the Hopf fibration, and θ is a connection form (or \mathbb{RP}^2).

Foscolo: modified Kummer construction, 3-dim limit $=T^3/\mathbb{Z}_2$, with flat metric. At 8 singular points, ALF D_2 metrics bubble off.

ALH bubbles

Recall: (X,g) is ALH if

$$g = dr^2 + g_{T^3} + O(e^{-\delta r}).$$

as $r \to \infty$, with $Vol(B(p,r)) \sim r$.

Chen-Chen: 1-dim limit = [0,1]. Singular points at 0,1. Interior: collapse with uniformly bounded curvature, uniform shrinking of flat T^3 .

Produced by gluing together 2 ALH factors with a long cylindrical region in between, using earlier ideas of Kovalev-Singer, Floer.

Tian-Yau metrics

Let DP_b be a degree $1 \le b \le 9$ del Pezzo surface. Let $T^2 \subset DP_b$ be a smooth anticanonical divisor.

Theorem (Tian-Yau)

 $X_b = DP_b \setminus T^2$ admits a complete Ricci-flat Kähler metric, which is asymptotic to a Calabi ansatz metric on a punctured disc bundle in N_{T^2} .

Solution of the form
$$\omega_g = \frac{i}{2\pi} \Big\{ \partial \overline{\partial} (-\log \|S\|^2)^{\frac{3}{2}} + \partial \overline{\partial} \phi \Big\}.$$

We would like to "glue" two of these spaces together, but the asymptotic geometry is not cylindrical: need to find appropriate neck region.

Tian-Yau metrics are ALH*

Theorem (Hein-Sun-V-Zhang)

A Tian-Yau metric on $X_b = DP_b \setminus T^2$ is ALH*, with

$$g = g_b + O(e^{-\delta r^{2/3}})$$

as $r \to \infty$, for some $\delta > 0$.

The proof relies on finding improved asymptotics for the complex structure, and then using techniques in Hein's thesis and Tian-Yau.

Hein-Sun-V-Zhang

Theorem (HSVZ)

Given integers $1 \le b_{\pm} \le 9$, there is a family of hyperkähler metrics g_{β} on a K3 surface which collapse to an interval [0,1],

$$(K3, g_{\beta}) \xrightarrow{GH} ([0, 1], dt^2), \ \beta \to \infty,$$

with the following properties:

- The "bubbles" at the endpoints are Tian-Yau metrics on del Pezzo surfaces of degree b_\pm minus an anticanonical elliptic curve.
- In the interior region, there are $b_+ + b_-$ Taub-NUT bubbles.

K3, illustrated

Figure: The vertical arrows represent collapsing to a one-dimensional interval. The red circles represent the S^1 fibers, the blue curves represent the T^2 directions, and the \times s are Taub-NUT metrics.

Hein-Sun-V-Zhang

Remarks on HSVZ:

- Neck region is produced using the Gibbons-Hawking ansatz over $T^2 \times \mathbb{R}$, and a harmonic function which is asymptotically linear in z on each end, and with $b_+ + b_-$ monopole points in the interior.
- Produced using technique of gluing hyperkähler triples, introduced by Donaldson, and also used in Foscolo's work.
- In the regular collapsing regions, nilmanifold collapsing occurs: the T^2 directions and the S^1 directions shrink at different rates

$$\operatorname{diam}(Nil_h^3) \sim \beta^{-1}, \quad \operatorname{diam}(S^1) \sim \beta^{-2}.$$

Elliptic K3 surfaces

Remarks:

- Gross-Wilson: Case of elliptic K3 with 24 fibers of type I_1 (nodal cubics). 2-dim limit $=S^2$. Away from 24 singular points, sequence collapses with uniformly bounded curvature, with T^2 -fibers being uniformly scaled down. Gross-Tosatti-Zhang: any elliptic K3, GH limit is S^2 . Odaka-Oshima made further progress. Bubbles?
- In joint work with Gao Chen and Ruobing Zhang, we show it is possible to generalize Gross-Wilson to any elliptically fibered K3 surface (24 I_1 fibers is the generic case) AND understand the behavior near the singular fibers. In particular, in the Gross-Wilson case, we can show that at the 24 singular points, Taub-NUT ALF metrics bubble off.

Chen-V-Zhang

Theorem (Chen-V-Zhang)

For any elliptic K3 surface $\pi: X \to \mathbb{P}^1$, there exists a family of Ricci-flat Kähler metrics g_{ϵ} on X such that:

- The area of a regular fiber is ϵ , and $(X, g_{\epsilon}) \xrightarrow{\mathrm{GH}} (S^2, g_{McLean})$ as $\epsilon \to 0$.
- Near singular fibers with finite monodromy, bubbles are ALG gravitational instantons.
- Near singular fibers with infinite monodromy, there are b Taub-NUT bubbles in the \mathbf{I}_b case and b Taub-NUT bubbles plus 4 Eguchi-Hanson bubbles in the \mathbf{I}_b^* case.

Greene-Shapere-Vafa-Yau semi-flat metric

Let $\pi:X\to\mathbb{P}^1$ be an elliptic K3 surface with a holomorphic section.

Fix a non-vanishing holomorphic 2-form Ω on X, for any small enough disc $E \subset \mathbb{P}^1 \setminus S$, for any fixed holomorphic coordinate y on E, there exists a unique local coordinate $x \in \mathbb{C}/(\mathbb{Z}\tau_1(y) \oplus \mathbb{Z}\tau_2(y))$ such that $\Omega = dx \wedge dy$ locally on $X|_E$.

Write

$$x = x_1 \tau_1(y) + x_2 \tau_2(y), \ x_1, x_2 \in \mathbb{R}/\mathbb{Z},$$

and define

$$\omega_{\delta}^{\mathrm{sf}} = \delta^2 \cdot dx_1 \wedge dx_2 + \underbrace{\frac{\sqrt{-1}}{2} \cdot \mathrm{Im}(\bar{\tau}_1 \tau_2) dy \wedge d\bar{y}}_{g_{McLean}}.$$

Resolving the singularities

The semi-flat metric is singular near the singular fibers. To resolve:

- Finite monodromy fibers: the asymptotics of the dual isotrivial ALG metrics agree with the asymptotics of the semi-flat metric near the fibers with finite monodromy, so we can glue these onto the semi-flat metric near these fibers.
- Infinite monodromy fibers: glue in an incomplete "multi-Ooguri-Vafa metric" in the I_b case, or a multi-Ooguri-Vafa metric with 2b monopole points modulo a \mathbb{Z}_2 action in the I_b^* case (and 4 Eguchi-Hanson metrics to resolve the 4 ODP).

Work in progress

Theorem (Chen-V-Zhang)

For any elliptic K3 surface $\pi: X \to \mathbb{P}^1$, there exists a family of Ricci-flat Kähler metrics g_{ϵ} on X such that:

• Near singular fibers of of type $I_b^*, 0 \le b \le 14$, given any integer $0 \le \nu \le 4$ there can be an ALG_{ν}^* gravitational instanton bubble plus $b + \nu$ Taub-NUT bubbles.

We cannot do this with a fixed complex structure. The idea is similar to HSVZ: use a Gibbons-Hawking ansatz over $\mathbb{R}^2 \times S^1$ with a suitable harmonic function, we can construct a neck region which interpolates between the semi-flat metric near the I_b^* fiber and the ALG_{ν}^* bubble.

Summary

In summary, the known GH limits and bubbles arising from sequences of Ricci-flat metrics on the K3 surface:

Туре	Vol(B(p,r))	Case	G-H limit
ALE	$\sim r^4$	Kummer	T^4/\mathbb{Z}_2
ALF	$\sim r^3$	Foscolo	T^3/\mathbb{Z}_2
ALG	$\sim r^2$	Chen-V-Zhang	S^2
$ALG^*_{\nu}, 1 \leq \nu \leq 4$	$\sim r^2$	Chen-V-Zhang	S^2
ALH	$\sim r$	Chen-Chen	[0, 1]
$ALH_b^*, 1 \leq b \leq 9$	$\sim r^{\frac{4}{3}}$	HSVZ	[0, 1]

Question

Are there any other possible collapsed GH limits?

Question

Are there any other possible gravitational instanton bubbles?

End

Thank you for your attention.