The Atiyah-Patodi-Singer index and domain-wall fermion Dirac operators

Shinichiroh Matsuo 2020-08-07 01:10-02:00 UTC

Nagoya University, Japan

This talk is based on a joint work

arXiv:1910.01987 (to appear in CMP)

of three mathematicians and three physicists:

- · Mikio Furuta
- Mayuko Yamashita
- · Shinichiroh Matsuo

- · Hidenori Fukaya
- · Tetsuya Onogi
- Satoshi Yamaguchi

Main theorem

Theorem (FFMOYY arXiv:1910.01987)

For $m \gg 0$, we have a formula

$$\operatorname{Ind}_{\mathsf{APS}}(D|_{X_+}) = \frac{\eta(D + m\kappa\gamma) - \eta(D - m\gamma)}{2}.$$

- The Atiyah-Patodi-Singer index is expressed in terms of the η -invariant of domain-wall fermion Dirac operators.
- The original motivation comes from the bulk-edge correspondence of topological insulators in condensed matter physics.
- The proof is based on a Witten localisation argument.

Plan of the talk

- 1. Reviews of the Atiyah-Singer index and the eta invariant
- 2. The Atiyah-Patodi-Singer index
- 3. Domain-wall fermion Dirac operators
- 4. Main theorem
- 5. The proof of a toy model
- 6. The proof of the main theorem: Witten localisation

Index and Eta

Let X be a closed manifold and $S \to X$ a hermitian bundle. Assume $\dim X$ is even. Assume S is $\mathbb{Z}/2$ -graded: there exists $\gamma \colon \Gamma(S) \to \Gamma(S)$ such that $\gamma^2 = \mathrm{id}_S$.

$$\gamma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Let $D: \Gamma(S) \to \Gamma(S)$ be a 1st order elliptic differential operator. Assume D is odd and self-adjoint:

$$D = \begin{pmatrix} 0 & D_{-} \\ D_{+} & 0 \end{pmatrix}$$
 and $D_{-} = (D_{+})^{*}$.

Definition

Ind
$$D := \dim \operatorname{Ker} D_+ - \dim \operatorname{Ker} D_-$$

= $\dim \operatorname{Ker} D_+ - \dim \operatorname{Coker} D_+$

Fix $m \neq 0$ and consider

$$D + m\gamma = \begin{pmatrix} m & D_- \\ D_+ & -m \end{pmatrix} : \Gamma(S) \to \Gamma(S).$$

This is self-adjoint but no longer odd; thus, its spectrum is real but not symmetric around 0. For $Re(z) \gg 0$, let

$$\eta(D+m\gamma)(z) := \sum_{\lambda_j} \frac{\operatorname{sign} \lambda_j}{|\lambda_j|^z},$$

where $\{\lambda_j\} = \operatorname{Spec}(D + m\gamma)$. Note that $\lambda_j \neq 0$ for any j.

Definition

$$\eta(D+m\gamma):=\eta(D+m\gamma)(0).$$

The eta invariant describes the overall asymmetry of the spectrum of a self-adjoint operator.

Proposition

For any m > 0, we have a formula

$$\operatorname{Ind}(D) = \frac{\eta(D + m\gamma) - \eta(D - m\gamma)}{2}.$$

This formula might be unfamiliar; however, we can prove it easily, for example, by diagonalising D^2 and γ simultaneously. We will explain another proof later.

We will generalise this formula to handle compact manifolds with boundary and the Atiyah-Patodi-Singer index.

Proposition

For any m > 0, we have a formula

$$\operatorname{Ind}(D) = \frac{\eta(D + m\gamma) - \eta(D - m\gamma)}{2}.$$

We will generalise this formula to handle compact manifolds with boundary and the Atiyah-Patodi-Singer index by using domain-wall fermion Dirac operators.

Theorem (FFMOYY arXiv:1910.01987)

For $m \gg 0$, we have a formula

$$\operatorname{Ind}_{\mathsf{APS}}(D|_{X_+}) = \frac{\eta(D + m\kappa\gamma) - \eta(D - m\gamma)}{2}.$$

Next, we review the Atiyah-Patodi-Singer index.

The Atiyah-Patodi-Singer index

Let $Y \subset X$ be a separating submanifold that decomposes X into two compact manifolds X_+ and X_- with common boundary Y. Assume Y has a collar neighbourhood isometric to $(-4,4) \times Y$.

$$(-4,4) \times Y \subset X = X_{-} \bigcup_{Y} X_{+}$$

$$X_{-} \qquad Y \qquad X_{+}$$

Assume $S \to X$ and $D \colon \Gamma(S) \to \Gamma(S)$ are standard on $(-4,4) \times Y$ in the sense that there exists a hermitian bundle $E \to Y$ and a self-adjoint elliptic operator $A \colon \Gamma(E) \to \Gamma(E)$ such that $S = \mathbb{C}^2 \otimes E$ and

$$D = \begin{pmatrix} 0 & D_+^* \\ D_+ & 0 \end{pmatrix} = \begin{pmatrix} 0 & \partial_u + A \\ -\partial_u + A & 0 \end{pmatrix}$$

on $(-4,4) \times Y$.

Assume also A has no zero eigenvalues.

Let $\widehat{X_+} := (-\infty, 0] \times Y \cup X_+$.

We assumed D is translation invariant on $(-4, 4) \times Y$:

$$D = \begin{pmatrix} 0 & D_+^* \\ D_+ & 0 \end{pmatrix} = \begin{pmatrix} 0 & \partial_u + A \\ -\partial_u + A & 0 \end{pmatrix}.$$

Thus, $D|_{X_+}$ naturally extends to $\widehat{X_+}$, which is denoted by \widehat{D} .

This is Fredholm if A has no zero eigenvalues.

Definition (Atiyah-Patodi-Singer index)

$$\operatorname{Ind}_{\mathsf{APS}}(D|_{X_+}) := \operatorname{Ind}(\widehat{D})$$

Domain-wall fermion Dirac operators

Let $\kappa: X \to \mathbb{R}$ be a step function such that $\kappa \equiv \pm 1$ on X_{\pm} .

Definition

For m > 0,

$$D + m\kappa\gamma \colon \Gamma(S) \to \Gamma(S)$$

is called a domain-wall fermion Dirac operator.

 $D + m\kappa\gamma$ is self-adjoint but not odd.

$$D = \begin{pmatrix} 0 & \partial_u + A \\ -\partial_u + A & 0 \end{pmatrix} \text{ on } (-4, 4) \times Y$$

Proposition

If Ker A =
$$\{0\}$$
, then Ker $(D + m\kappa\gamma) = \{0\}$ for $m \gg 0$.

Next we will define $\eta(D + m\kappa\gamma)$.

The eta invariant of domain-wall fermion Dirac operators

Since $\text{Ker}(D + m\kappa\gamma) = \{0\}$, there exists a constant $C_m > 0$ such that $\text{Ker}(D + m\kappa\gamma + f) = \{0\}$ if $||f||_2 < C_m$.

Corollary of the variational formula of the eta invariant

Assume both $m\kappa\gamma+f_1$ and $m\kappa\gamma+f_2$ are smooth with $\|f_1\|_2 < C_m$ and $\|f_2\|_2 < C_m$. Then, we have

$$\eta(D + m\kappa\gamma + f_1) = \eta(D + m\kappa\gamma + f_2).$$

Definition

For any f with $||f||_2 < C_m$ and $m\kappa\gamma + f$ smooth, we set

$$\eta(D + m\kappa\gamma) := \eta(D + m\kappa\gamma + f).$$

Main theorem

Main theorem

Theorem (FFMOYY arXiv:1910.01987)

For $m \gg 0$, we have a formula

$$\operatorname{Ind}_{\mathsf{APS}}(D|_{X_+}) = \frac{\eta(D + m\kappa\gamma) - \eta(D - m\gamma)}{2}.$$

- The Atiyah-Patodi-Singer index is expressed in terms of the η-invariant of domain-wall fermion Dirac operators.
- The original motivation comes from physics.
- The proof is based on a Witten localisation argument.

The proof of a toy model

Toy model

Proposition

For any m > 0, we have a formula

$$\operatorname{Ind}(D) = \frac{\eta(D + m\gamma) - \eta(D - m\gamma)}{2}.$$

As a warm-up, we will prove this formula in the spirit of our proof of the main theorem.

Let $\widehat{\kappa}_{\mathrm{AS}} \colon \mathbb{R} \times X \to \mathbb{R}$ be a step function such that $\widehat{\kappa}_{\mathrm{AS}} \equiv 1$ on $(0,\infty) \times X$ and $\widehat{\kappa}_{\mathrm{AS}} \equiv -1$ on $(-\infty,0) \times X$.

We consider \widehat{D}_m : $L^2(\mathbb{R} \times X; S \oplus S) \to L^2(\mathbb{R} \times X; S \oplus S)$ defined by

$$\widehat{D}_m := \begin{pmatrix} 0 & (D + m\widehat{\kappa}_{AS}\gamma) + \partial_t \\ (D + m\widehat{\kappa}_{AS}\gamma) - \partial_t & 0 \end{pmatrix}.$$

This is a Fredholm operator.

Model case: the Jackiw-Rebbi solution on $\mathbb R$

For any m > 0, we have

$$\frac{d}{dt}e^{-m|t|} = -m\operatorname{sgn} e^{-m|t|},$$

where $sgn(\pm t) = \pm 1$. As $m \to \infty$, the solution concentrates at 0.

$$\begin{pmatrix} 0 & \partial_t + m \operatorname{sgn} \\ -\partial_t + m \operatorname{sgn} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ e^{-m|t|} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$\widehat{\kappa}_{\mathrm{AS}} \equiv -1$$
 $\widehat{\kappa}_{\mathrm{AS}} \equiv +1$

$$\widehat{D}_{m} := \begin{pmatrix} 0 & (D + m\widehat{\kappa}_{AS}\gamma) + \partial_{t} \\ (D + m\widehat{\kappa}_{AS}\gamma) - \partial_{t} & 0 \end{pmatrix}$$
$$(e^{-m|t|})' = -m \operatorname{sgn} e^{-m|t|}$$

Proposition (Product formula)

$$Ind(D) = Ind(\widehat{D}_m)$$

Assume $D\phi=0$. Set $\phi_{\pm}:=(\phi\pm\gamma\phi)/2$. Then, we have

$$\begin{pmatrix} 0 & (D+m\widehat{\kappa}_{\mathrm{AS}}\gamma) + \partial_t \\ (D+m\widehat{\kappa}_{\mathrm{AS}}\gamma) - \partial_t & 0 \end{pmatrix} \begin{pmatrix} e^{-m|t|}\phi_- \\ e^{-m|t|}\phi_+ \end{pmatrix} = 0.$$

$$\widehat{\kappa}_{AS} \equiv -1$$
 $\widehat{\kappa}_{AS} \equiv +1$

$$\widehat{D}_m := \begin{pmatrix} 0 & (D + m\widehat{\kappa}_{AS}\gamma) + \partial_t \\ (D + m\widehat{\kappa}_{AS}\gamma) - \partial_t & 0 \end{pmatrix}$$

Proposition (APS formula)

$$\operatorname{Ind}(\widehat{D}_m) = \frac{\eta(D + m\gamma) - \eta(D - m\gamma)}{2}$$

- Note that $D + m\hat{\kappa}_{AS}(\pm 1, \cdot)\gamma = D \pm m\gamma$.
- Perturb $\widehat{\kappa}_{AS}$ slightly near $\{0\} \times X$ to get a smooth operator.
- Use the Atiyah-Patodi-Singer index theorem on $\mathbb{R} \times X$.
- Since $\dim \mathbb{R} \times X$ is odd, the constant term in the asymptotic expansion of the heat kernel vanishes.

Proposition

$$\operatorname{Ind}(D) = \frac{\eta(D + m\gamma) - \eta(D - m\gamma)}{2}.$$

$$\widehat{D}_m := \begin{pmatrix} 0 & (D + m\widehat{\kappa}_{AS}\gamma) + \partial_t \\ (D + m\widehat{\kappa}_{AS}\gamma) - \partial_t & 0 \end{pmatrix}$$

By the product formula, we have

$$Ind(D) = Ind(\widehat{D}_m).$$

By the APS formula, we have

$$\operatorname{Ind}(\widehat{D}_m) = \frac{\eta(D+m\gamma) - \eta(D-m\gamma)}{2}.$$

The proof of the main theorem

Outline of the proof

Theorem (FFMOYY arXiv:1910.01987)

For $m \gg 0$, we have a formula

$$\operatorname{Ind}_{\mathsf{APS}}(D|_{X_+}) = \frac{\eta(D + m\kappa\gamma) - \eta(D - m\gamma)}{2}.$$

The proof is modelled on the original embedding proof of the Atiyah-Singer index theorem.

- 1. Embed $\widehat{X_+}$ into $\mathbb{R} \times X$.
- 2. Extend both \widehat{D} on $\widehat{X_+}$ and $D + m\kappa\gamma$ on $\{10\} \times X$ to $\mathbb{R} \times X$.
- 3. Use the product formula, the APS formula, and a Witten localisation argument.

Embedding of $\widehat{X_+}$ into $\mathbb{R} \times X$

$$\widehat{X_+} := (-\infty, 0] \times Y \cup X_+.$$

We can embed $\widehat{X_+}$ into $\mathbb{R} \times X$ as follows:

Extension of \widehat{D} and $D + m\kappa\gamma$ to $\mathbb{R} \times X$

 $(\mathbb{R} \times X) \setminus \widehat{X_+}$ has two connected components. We denote by $(\mathbb{R} \times X)_-$ the one containing $\{-10\} \times X_+$ and by $(\mathbb{R} \times X)_+$ the other half. Let $\widehat{\kappa}_{\mathrm{APS}} \colon \mathbb{R} \times X \to [-1,1]$ be a step function such that $\widehat{\kappa}_{\mathrm{APS}} \equiv \pm 1$ on $(\mathbb{R} \times X)_{\pm}$.

We consider

$$\widehat{\mathcal{D}}_m := \begin{pmatrix} 0 & (D + m\widehat{\kappa}_{APS}\gamma) + \partial_t \\ (D + m\widehat{\kappa}_{APS}\gamma) - \partial_t & 0 \end{pmatrix}.$$

$$\widehat{\kappa}_{\mathrm{APS}} \equiv +1$$
 $\widehat{\kappa}_{\mathrm{APS}} \equiv +1$

$$\widehat{\mathcal{D}}_m := \begin{pmatrix} 0 & (D + m\widehat{\kappa}_{\text{APS}}\gamma) + \partial_t \\ (D + m\widehat{\kappa}_{\text{APS}}\gamma) - \partial_t & 0 \end{pmatrix}.$$

$$\widehat{\kappa}_{\mathrm{APS}} \equiv \kappa \text{ on } \{10\} \times X.$$

Proposition (APS formula)

$$\operatorname{Ind}(\widehat{\mathcal{D}}_m) = \frac{\eta(D + m\kappa\gamma) - \eta(D - m\gamma)}{2}$$

$$\widehat{\mathcal{D}}_m := \begin{pmatrix} 0 & (D + m\widehat{\kappa}_{\text{APS}}\gamma) + \partial_t \\ (D + m\widehat{\kappa}_{\text{APS}}\gamma) - \partial_t & 0 \end{pmatrix}.$$

The restriction of $\widehat{\mathcal{D}}_m$ to a tubular neighbourhood of \widehat{X}_+ is isomorphic to

$$\begin{pmatrix} 0 & (\widehat{D} + m \operatorname{sgn} \gamma) + \partial_t \\ (\widehat{D} + m \operatorname{sgn} \gamma) - \partial_t & 0 \end{pmatrix}$$

on $\mathbb{R} \times \widehat{X_+}$ near $\{0\} \times \widehat{X_+}$, where \widehat{D} is the extension of $D|_{X_+}$ to $\widehat{X_+}$.

Witten localisation

Theorem (Witten localisation)

For $m \gg 0$, we have

$$\operatorname{Ind}(\widehat{\mathcal{D}}_m) = \operatorname{Ind}\begin{pmatrix} 0 & (\widehat{D} + m\operatorname{sgn}\gamma) + \partial_t \\ (\widehat{D} + m\operatorname{sgn}\gamma) - \partial_t & 0 \end{pmatrix}.$$

The proof is too technical to state here, but the idea is simple.

$$\begin{pmatrix} 0 & \partial_t + m \operatorname{sgn} \\ -\partial_t + m \operatorname{sgn} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ e^{-m|t|} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Proposition (Product formula)

$$\operatorname{Ind}\begin{pmatrix}0&(\widehat{D}+m\operatorname{sgn}\gamma)+\partial_t\\(\widehat{D}+m\operatorname{sgn}\gamma)-\partial_t&0\end{pmatrix}=\operatorname{Ind}(\widehat{D})$$

Theorem (FFMOYY arXiv:1910.01987)

For $m \gg 0$, we have a formula

$$\operatorname{Ind}_{\mathsf{APS}}(D|_{X_+}) = \frac{\eta(D + m\kappa\gamma) - \eta(D - m\gamma)}{2}.$$

By definition, we have $\operatorname{Ind}_{APS}(D|_{X_+}) = \operatorname{Ind}(\widehat{D})$. By the product formula, we have

$$\operatorname{Ind}(\widehat{D}) = \operatorname{Ind}\begin{pmatrix} 0 & (\widehat{D} + m\operatorname{sgn}\gamma) + \partial_t \\ (\widehat{D} + m\operatorname{sgn}\gamma) - \partial_t & 0 \end{pmatrix}.$$

By the Witten localisation argument, for $m \gg 0$, we have

$$\operatorname{Ind}\begin{pmatrix}0&(\widehat{D}+m\operatorname{sgn}\gamma)+\partial_t\\(\widehat{D}+m\operatorname{sgn}\gamma)-\partial_t&0\end{pmatrix}=\operatorname{Ind}(\widehat{\mathcal{D}}_m).$$

By the APS formula, we have

$$\operatorname{Ind}(\widehat{\mathcal{D}}_m) = \frac{\eta(D + m\kappa\gamma) - \eta(D - m\gamma)}{2}.$$