The Atiyah-Patodi-Singer index and
domain-wall fermion Dirac operators

Shinichiroh Matsuo
2020-08-07 01:10-02:00 UTC

Nagoya University, Japan



This talk is based on a joint work
arxiv:1910.01987 (to appear in CMP)

of three mathematicians and three physicists:

- Mikio Furuta - Hidenori Fukaya
- Mayuko Yamashita - Tetsuya Onogi
- Shinichiroh Matsuo - Satoshi Yamaguchi
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Theorem (FFMOYY arXiv:1910.01987)
For m > 0, we have a formula

D+ m —n(D—m
indaps( Dy, ) = n( 7)2 n( 7

- The Atiyah-Patodi-Singer index is expressed in terms of

the n-invariant of

- The original motivation comes from the bulk-edge

correspondence of topological insulators in condensed
matter physics.

- The proof is based on a Witten localisation argument.
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Index and Eta



Let X be a closed manifold and S — X a hermitian bundle.
Assume dim X is even. Assume S is Z/2-graded: there exists
v: TF(S) — [(S) such that 4* = ids.

=5 %)

Let D: T(S) — I(S) be a 1st order elliptic differential operator.
Assume D is odd and self-adjoint:

0 D_ .
D:(D+ O) and D_ = (D4)*.

Definition
Ind D :=dim Ker D — dim Ker D_
=dim Ker D4 — dim Coker D
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Fix m # 0 and consider

D+ my= (EZ E%) L 1(S) = T(9).

This is self-adjoint but no longer odd; thus, its spectrum is real
but not symmetric around 0. For Re(z) > 0, let

o0+ m)(a) = 30 5,

where {);} = Spec(D 4+ m~). Note that ; # 0 for any j.
Definition

n(D + m7y) :=n(D + m~)(0).
The eta invariant describes the overall asymmetry of the
spectrum of a self-adjoint operator.
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Proposition
For any m > 0, we have a formula
n(D + my) —n(D — my)

Ind(D) = 5 .

This formula might be unfamiliar; however, we can prove it

easily, for example, by diagonalising D? and ~ simultaneously.

We will explain another proof later.

We will generalise this formula to handle compact manifolds
with boundary and the Atiyah-Patodi-Singer index.
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Proposition
For any m > 0, we have a formula

mdm:n@+mﬂ;n@—mﬂ

We will generalise this formula to handle compact manifolds
with boundary and the Atiyah-Patodi-Singer index by using
domain-wall fermion Dirac operators.

Theorem (FFMOYY arXiv:1910.01987)
For m > 0, we have a formula
n(D + mry) —n(D — my)

|ndAp5(D’X+) = 2 o

Next, we review the Atiyah-Patodi-Singer index.
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The Atiyah-Patodi-Singer index



Let Y C X be a separating submanifold that decomposes X into
two compact manifolds Xy and X_ with common boundary Y.
Assume Y has a collar neighbourhood isometric to (—4,4) x Y.

(—4,4) x Y Xx=x_| x4
Y
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Assume S — X and D: I'(S) — I'(S) are standard on (—4,4) x Y
in the sense that there exists a hermitian bundle E — Y and a
self-adjoint elliptic operator A: I'(E) — I'(E) such that
S=C?®Eand

oo [0 D3\ _ 0 9 +A
D, 0 8y +A 0

on (—4,4) x Y.

Assume also A has no zero eigenvalues.
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Let X} := (—o00, 0] x YU X,

(70070) xY X+

We assumed D is translation invariant on (—4,4) x Y:
A 0 du+A)
Dy O —d,+A 0
Thus, DIy, naturally extends to )@ which is denoted by D.

This is Fredholm if A has no zero eigenvalues.

Definition (Atiyah-Patodi-Singer index)

Indaps(Dly, ) := Ind(D)
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Domain-wall fermion Dirac operators




Let x: X — R be a step function such that x = 1 on X...

K

Definition
For m > 0,
D+ mry: T(S) — I(S)

is called a domain-wall fermion Dirac operator.
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D + mk~ is self-adjoint but not odd.

R

D= 0 O +A on (—4,4) x Y
-8+A 0

Proposition
If Ker A = {0}, then Ker(D + mk~) = {0} for m > 0.

Next we will define n(D + mk~).
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The eta invariant of domain-wall fermion Dirac operators

Since Ker(D + mk~) = {0}, there exists a constant Cp, > 0 such
that Ker(D + mey + f) = {0} if ||f]l2 < Cm.

Corollary of the variational formula of the eta invariant
Assume both mk~ + f; and mk~ + f, are smooth with
If1ll2 < Cm and ||f2]|2 < Cm. Then, we have

(D + mevy+f1) =n(D+ mey + f7).

Definition
For any fwith ||fll. < C» and mk~y + f smooth, we set

n(D + meky) :=n(D + mey + f).
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Main theorem




Theorem (FFMOYY arXiv:1910.01987)
For m > 0, we have a formula

indaps( Dy, ) = (D + mry) — n(D — my)

- The Atiyah-Patodi-Singer index is expressed in terms of
the np-invariant of
- The original motivation comes from physics.

- The proof is based on a Witten localisation argument, /%8



The proof of a toy model




Toy model

Proposition
For any m > 0, we have a formula
D+ my) —n(D —my)

ind(D) = ¢ . .

As a warm-up, we will prove this formula in the spirit of our
proof of the main theorem.

15/28



Let Kag: R x X — R be a step function such that Kag = 10n
(0,00) x Xand Kag = —10n (—00,0) x X.

EAS = -1

We consider Dp: L2(R x X; S® S) — LA(R x X; S @ S) defined by

T (D + mEagy) — B 0 '

This is a Fredholm operator.
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Model case: the Jackiw-Rebbi solution on R

Forany m > 0, we have

d
7e_m‘t| —

dt
where sgn(£t) = £1. As m — oo, the solution concentrates at 0.

—mit
—msgne It

—m|t
e~ msgn

t

0 Ot + msgn 0 (0
—0t + msgn 0 e=mit ) — \o/"
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kas = —1
5 _ 0 (D+m/?Aw)+8t
me (D—i—m/?xq’y)—at 0
(e=MY = —msgne=mlt

Proposition (Product formula)
Ind(D) = Ind(Dpn)

Assume D¢ = 0. Set ¢4 := (¢ = v¢)/2. Then, we have

0 (D + miagy) +0:\ [e ™Mo\ 0
(D + MRasy) — O 0 e~milg, |
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k\AS = —1

S 0 (D‘l‘m/:[\g’)/)-f‘at
K (D + mEagy) — O 0

N——

Proposition (APS formula)

D+ my) —n(D—mv)

Ind (D) = ¢ -

- Note that D 4+ mkas(£1,-)y =D £ m~.
- Perturb kag slightly near {0} x X to get a smooth operator.
- Use the Atiyah-Patodi-Singer index theorem on R x X.

- Since dimR x X is odd, the constant term in the
asymptotic expansion of the heat kernel vanishes. 19/28



Proposition

Ind(D) — n(D + m7) . (D —my)
5. 0 (D 4+ mEagy) + 0
"\ (D + mRasy) — & 0

By the product formula, we have
Ind(D) = Ind(Dpn).
By the APS formula, we have

Ind(Brn) = n(D + my) . (D —my)
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The proof of the main theorem




Outline of the proof

Theorem (FFMOYY arXiv:1910.01987)
For m > 0, we have a formula
n(D + mrry) —n(D — my)

|ndAp5(D’X+) = 2 .

The proof is modelled on the original embedding proof of the
Atiyah-Singer index theorem.

1. Embed )C into R x X.
2. Extend both D on X, and D + mk~y on {10} x X to R x X,

3. Use the product formula, the APS formula, and a Witten
localisation argument.
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Embedding of X, into R x X

Xy = (—00,0] x YUX,.

(—00,0) x Y X,

We can embed )C into R x X as follows:
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Extension of D and D + mrk~y to R x X

(R x X) \)C has two connected components. We denote by
(R x X)— the one containing {—10} x X4 and by (R x X);+ the
other half. Let Kaps: R x X — [—1,1] be a step function such
that Kaps = 1 0n (R x X)4.

EAES = +1
R\APS = 1 )?I B
We consider
D 0 (D 4+ mEapsy) + O
™\ (D + mEapsy) — 8 0 .
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EA‘BS = +1

k\APS = 1 X: ) B

D + mEapsy) — O 0

/I%Aps = Kk 0N {10} x X.

Proposition (APS formula)

Ind(Byy) = 1P+ mw)z— (D —m7)

S ( 0 (D+m2Apsv)+8t>
=, .
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EA‘ES = +1
Raps = 11 X , 5

ﬁ o 0 (Derk\Aps’y)Jrat
" \(D+ mRapsy) — O 0 '

The restriction of ﬁm to a tubular neighbourhood of)a is
isomorphic to

0 (D + msgnvy) +
(D+ msgn~y) — 0 0

on R x )C near {0} X)C, where D is the extension of Dly, to )a
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Witten localisation

Theorem (Witten localisation)
For m > 0, we have

Ind(Byn) = Ind [ ~ 0 (D+ msgn~) + o '
(D + msgn~y) — 0 0

The proof is too technical to state here, but the idea is simple.

—mit
e~ msgn

t

0 Or + msgn 0 (0
—0r + msgn 0 e~mit )] —\o/" %/28




Proposition (Product formula)

ind [ 0 (D+ msgn~y) + 0 _ 1nd(D)
(D+ msgn~) — 0 0
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Theorem (FFMOYY arXiv:1910.01987)
For m > 0, we have a formula

n(D + mry) —n(D — my)
2

Indaps(Dly, ) =

By definition, we have Indaps(Dly, ) = Ind(D).
By the product formula, we have

Ind(D) = Ind [ ~ 0 (D + msgn~y) + 0 .
(D+ msgn~y) — 0 0

By the Witten localisation argument, for m > 0, we have

nd( ~ ° (D+mseny)+9) _\45,).
(D+ msgn~y) — 0o 0

By the APS formula, we have

~ n(D + mry) —n(D — my
Ind(Drm) = ( )2 ( )' 28/28
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