Universality for diffusions interacting through a random matrix

Amir Dembo
Stanford University
Pacific Rim Conference, Aug. 2020
Joint works with Reza Gheissari, Eyal Lubetzky and Ofer Zeitouni

- Motivation: spin-glass models, Langevin dynamics
- Limiting dynamics: Gaussian disorder
- Universality: the challenge for dynamics
- Combining Girsanov and Lindeberg (w. Lubetzky \& Zeitouni)
- Stochastic Taylor expansion
(w. Gheissari)

Spin-glass models

Random Gibbs measures on \mathbb{R}^{N} at inverse temperature $\beta>0$,

$$
\nu_{\beta, \mathrm{J}}^{N}(A)=Z_{\beta, \mathrm{J}}^{-1} \int_{A} e^{\beta H_{\mathrm{J}}(\mathrm{x})} e^{-2 U(\mathrm{x})} d \mathbf{x}, \quad A \subset \mathbb{R}^{N}
$$

with random $H_{\mathrm{J}}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and normalizing constant $Z_{\beta, \mathrm{J}}=\int \mathrm{e}^{\beta H_{\mathrm{J}}(\mathrm{x})-2 U(\mathrm{x})} d \mathbf{x}$. Potential $U(\mathbf{x})$ tunes the support (e.g. near the hypercube $\{ \pm 1\}^{N} \subset \mathbb{S}^{N}$).

Spin-glass models

Random Gibbs measures on \mathbb{R}^{N} at inverse temperature $\beta>0$,

$$
\nu_{\beta, \mathrm{J}}^{N}(A)=Z_{\beta, \mathrm{J}}^{-1} \int_{A} e^{\beta H_{\mathrm{J}}(\mathrm{x})} e^{-2 U(\mathrm{x})} d \mathbf{x}, \quad A \subset \mathbb{R}^{N}
$$

with random $H_{\mathrm{J}}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and normalizing constant $Z_{\beta, \mathrm{J}}=\int e^{\beta H_{\mathrm{J}}(\mathrm{x})-2 U(\mathbf{x})} d \mathbf{x}$. Potential $U(\mathbf{x})$ tunes the support (e.g. near the hypercube $\{ \pm 1\}^{N} \subset \mathbb{S}^{N}$).

Mixed p-spin models: H_{J} a centered Gaussian function

$$
\operatorname{Cov}\left(H_{\mathrm{J}}(\mathbf{x}), H_{\mathrm{J}}(\mathbf{y})\right)=N \xi\left(N^{-1}\langle\mathbf{x}, \mathbf{y}\rangle\right), \quad \xi(r):=\sum_{p \leq m} b_{p}^{2} r^{p}
$$

$m=2$ is Sherrington-Kirpatrick (SK) model; $\|\mathbf{x}\|^{2}=\langle\mathbf{x}, \mathbf{x}\rangle$, Euclidean norm.

Spin-glass models

Random Gibbs measures on \mathbb{R}^{N} at inverse temperature $\beta>0$,

$$
\nu_{\beta, \mathrm{J}}^{N}(A)=Z_{\beta, \mathrm{J}}^{-1} \int_{A} e^{\beta H_{\mathbf{J}}(\mathrm{x})} e^{-2 U(\mathrm{x})} d \mathbf{x}, \quad A \subset \mathbb{R}^{N}
$$

with random $H_{\mathbf{J}}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and normalizing constant $Z_{\beta, \mathrm{J}}=\int e^{\beta H_{\mathbf{J}}(\mathbf{x})-2 U(\mathbf{x})} d \mathbf{x}$. Potential $U(\mathbf{x})$ tunes the support (e.g. near the hypercube $\{ \pm 1\}^{N} \subset \mathbb{S}^{N}$).

Mixed p-spin models: H_{J} a centered Gaussian function

$$
\operatorname{Cov}\left(H_{\mathrm{J}}(\mathbf{x}), H_{\mathrm{J}}(\mathbf{y})\right)=N \xi\left(N^{-1}\langle\mathbf{x}, \mathbf{y}\rangle\right), \quad \xi(r):=\sum_{p \leq m} b_{p}^{2} r^{p}
$$

$m=2$ is Sherrington-Kirpatrick (SK) model; $\|\mathbf{x}\|^{2}=\langle\mathbf{x}, \mathbf{x}\rangle$, Euclidean norm.
Spin-glasses (on $\{ \pm 1\}^{N}$), are toy models of diluted magnetic systems with random interactions (examples of disordered mean-field models).
Spherical (on \mathbb{S}^{N}), often serving as further (mathematical) simplification.
Much recent progress in understanding the asymptotic $N \rightarrow \infty$ of $\nu_{\beta, \mathrm{J}}^{N}(\cdot)$ starting with $F_{\beta}=\lim N^{-1} \log Z_{\beta, \mathrm{J}}$ (Talagrand (06'), Panchenko (13'), ...).

Langevin dynamics for soft spins

Langevin particles $\mathbf{x}_{t}=\left(x_{t}^{(i)}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}$, solution of diffusion

$$
d \mathbf{x}_{t}=\beta \nabla H_{\mathrm{J}}\left(\mathbf{x}_{t}\right) d t-\nabla U\left(\mathbf{x}_{t}\right) d t+d \mathbf{B}_{t}
$$

where $\mathbf{B}_{t}=\left(B_{t}^{(i)}\right)_{1 \leq i \leq N}$ is N-dimensional Brownian motion.
Langevin dynamics is invariant for (random) Gibbs measure

$$
\nu_{2 \beta, \mathrm{~J}}^{N}(A)=Z_{2 \beta, \mathrm{~J}}^{-1} \int_{A} e^{2 \beta H_{\mathrm{J}}(\mathrm{x})-2 U(\mathrm{x})} d \mathbf{x}, \quad A \subset \mathbb{R}^{N}
$$

Langevin dynamics for soft spins

Langevin particles $\mathbf{x}_{t}=\left(x_{t}^{(i)}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}$, solution of diffusion

$$
d \mathbf{x}_{t}=\beta \nabla H_{\mathrm{J}}\left(\mathbf{x}_{t}\right) d t-\nabla U\left(\mathbf{x}_{t}\right) d t+d \mathbf{B}_{t}
$$

where $\mathbf{B}_{t}=\left(B_{t}^{(i)}\right)_{1 \leq i \leq N}$ is N-dimensional Brownian motion.
Langevin dynamics is invariant for (random) Gibbs measure

$$
\nu_{2 \beta, \mathrm{~J}}^{N}(A)=Z_{2 \beta, \mathrm{~J}}^{-1} \int_{A} e^{2 \beta H_{\mathrm{J}}(\mathrm{x})-2 U(\mathrm{x})} d \mathbf{x}, \quad A \subset \mathbb{R}^{N}
$$

SK model: $\nabla H_{\mathbf{J}}(\mathbf{x})=\frac{1}{\sqrt{N}} \mathrm{~J} \mathrm{x}$, J symmetric of i.i.d. standard Gaussian entries.

Langevin dynamics for soft spins

Langevin particles $\mathbf{x}_{t}=\left(x_{t}^{(i)}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}$, solution of diffusion

$$
d \mathbf{x}_{t}=\beta \nabla H_{\mathrm{J}}\left(\mathbf{x}_{t}\right) d t-\nabla U\left(\mathbf{x}_{t}\right) d t+d \mathbf{B}_{t}
$$

where $\mathbf{B}_{t}=\left(B_{t}^{(i)}\right)_{1 \leq i \leq N}$ is N-dimensional Brownian motion.
Langevin dynamics is invariant for (random) Gibbs measure

$$
\nu_{2 \beta, \mathrm{~J}}^{N}(A)=Z_{2 \beta, \mathrm{~J}}^{-1} \int_{A} e^{2 \beta H_{\mathrm{J}}(\mathrm{x})-2 U(\mathrm{x})} d \mathbf{x}, \quad A \subset \mathbb{R}^{N}
$$

SK model: $\nabla H_{\mathrm{J}}(\mathrm{x})=\frac{1}{\sqrt{N}} \mathrm{~J} \mathrm{x}, \mathrm{J}$ symmetric of i.i.d. standard Gaussian entries.
Soft binary spins: $U(\mathbf{x})=\sum_{i} U_{\star}\left(x^{(i)}\right)$,
$U_{\star}(r)=\infty$ outside $(-\mathfrak{s}, \mathfrak{s})$, minimal at $r= \pm 1$ (supported near $\{ \pm 1\}^{N}$).

Langevin dynamics for soft spins

Langevin particles $\mathbf{x}_{t}=\left(x_{t}^{(i)}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}$, solution of diffusion

$$
d \mathbf{x}_{t}=\beta \nabla H_{\mathbf{J}}\left(\mathbf{x}_{t}\right) d t-\nabla U\left(\mathbf{x}_{t}\right) d t+d \mathbf{B}_{t}
$$

where $\mathbf{B}_{t}=\left(B_{t}^{(i)}\right)_{1 \leq i \leq N}$ is N-dimensional Brownian motion.
Langevin dynamics is invariant for (random) Gibbs measure

$$
\nu_{2 \beta, \mathrm{~J}}^{N}(A)=Z_{2 \beta, \mathrm{~J}}^{-1} \int_{A} e^{2 \beta H_{\mathrm{J}}(\mathrm{x})-2 U(\mathrm{x})} d \mathbf{x}, \quad A \subset \mathbb{R}^{N}
$$

SK model: $\nabla H_{\mathrm{J}}(\mathrm{x})=\frac{1}{\sqrt{N}} \mathrm{~J} \mathrm{x}, \mathrm{J}$ symmetric of i.i.d. standard Gaussian entries.
Soft binary spins: $U(\mathbf{x})=\sum_{i} U_{\star}\left(x^{(i)}\right)$,
$U_{\star}(r)=\infty$ outside $(-\mathfrak{s}, \mathfrak{s})$, minimal at $r= \pm 1$ (supported near $\{ \pm 1\}^{N}$).
For x_{0} of i.i.d. entries, the (soft binary SK, Langevin) diffusion

$$
d x_{t}^{(i)}=-U_{\star}^{\prime}\left(x_{t}^{(i)}\right) d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} J_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}
$$

predicted to have exponential in N relaxation time when $\beta \gg 1$
\Longrightarrow Experiments can only observe the system out of equilibrium.

Limiting dynamics: Gaussian disorder, binary-spins

Consider empirical measures of particle trajectories in $[0, T]$,

$$
\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}} \in \mathcal{M}_{1}(C([0, T]))
$$

for $U_{\star}(r) \rightarrow \infty$ as $|r| \rightarrow \mathfrak{s}$, denoting by \mathbb{P}_{β} the law of interacting diffusions

$$
d x_{t}^{(i)}=-U_{\star}^{\prime}\left(x_{t}^{(i)}\right) d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} J_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}, \quad(i=1, \ldots, N)
$$

with i.i.d. Brownian motions $\left(B_{t}^{(i)}\right)_{t}$, i.i.d. $x_{0}^{(i)}$ initial conditions (IC), and frozen (quenched), i.i.d. standard Gaussian $J_{i j}$.

Limiting dynamics: Gaussian disorder, binary-spins

Consider empirical measures of particle trajectories in $[0, T]$,

$$
\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}} \in \mathscr{M}_{1}(C([0, T]))
$$

for $U_{\star}(r) \rightarrow \infty$ as $|r| \rightarrow \mathfrak{s}$, denoting by \mathbb{P}_{β} the law of interacting diffusions

$$
d x_{t}^{(i)}=-U_{\star}^{\prime}\left(x_{t}^{(i)}\right) d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} J_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}, \quad(i=1, \ldots, N)
$$

with i.i.d. Brownian motions $\left(B_{t}^{(i)}\right)_{t}$, i.i.d. $x_{0}^{(i)}$ initial conditions (IC), and frozen (quenched), i.i.d. standard Gaussian $J_{i j}$.

BenArous-Guionnet (95'), Guionnet (97') (symmetric J): as $N \rightarrow \infty$ $\mu_{N} \xrightarrow{\text { a.s. }} \mu_{\star}$ law of self-consistent non-Markovian single-spin diffusion. (predicted by Cristiani-Sampolinski (87'); [CS87] and Hertz et. al (87') also propose non-symmetric J for neural networks).

Limiting dynamics: Gaussian disorder, binary-spins

Consider empirical measures of particle trajectories in $[0, T]$,

$$
\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}} \in \mathscr{M}_{1}(C([0, T]))
$$

for $U_{\star}(r) \rightarrow \infty$ as $|r| \rightarrow \mathfrak{s}$, denoting by \mathbb{P}_{β} the law of interacting diffusions

$$
d x_{t}^{(i)}=-U_{\star}^{\prime}\left(x_{t}^{(i)}\right) d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} J_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}, \quad(i=1, \ldots, N)
$$

with i.i.d. Brownian motions $\left(B_{t}^{(i)}\right)_{t}$, i.i.d. $x_{0}^{(i)}$ initial conditions (IC), and frozen (quenched), i.i.d. standard Gaussian $J_{i j}$.

BenArous-Guionnet (95'), Guionnet (97') (symmetric J): as $N \rightarrow \infty$ $\mu_{N} \xrightarrow{\text { a.s. }} \mu_{\star}$ law of self-consistent non-Markovian single-spin diffusion. (predicted by Cristiani-Sampolinski (87'); [CS87] and Hertz et. al (87') also propose non-symmetric J for neural networks).

Key: Explicit Gaussian computation of $\Gamma_{N}\left(\mu_{N}\right)=N^{-1} \log \mathbb{E}_{J}\left[\left(d \mathbb{P}_{\beta} / d \mathbb{P}_{0}\right) \circ \mu_{N}^{-1}\right]$ \Rightarrow LDP for μ_{N} under $\mathbb{E}_{\jmath} \otimes \mathbb{P}_{\beta}$, with rate $I(\mu)=0 \Leftrightarrow \mu=\mu_{\star}$, yielding the LLN.

Limiting dynamics: Gaussian disorder, spherical model

Soft spherical spins: consider interacting Langevin diffusions

$$
d x_{t}^{(i)}=-2 U_{\star}^{\prime}\left(\left\|\mathbf{x}_{t}\right\|^{2} / N\right) x_{t}^{(i)} d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} J_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}, \quad(i=1, \ldots, N)
$$

with i.i.d. Brownian motions $\left(B_{t}^{(i)}\right)_{t}$, i.i.d. IC $\left(x_{0}^{(i)}\right)$, quenched i.i.d. standard Gaussian $J_{i j}=J_{j i}$.

Limiting dynamics: Gaussian disorder, spherical model

Soft spherical spins: consider interacting Langevin diffusions

$$
d x_{t}^{(i)}=-2 U_{\star}^{\prime}\left(\left\|\mathbf{x}_{t}\right\|^{2} / N\right) x_{t}^{(i)} d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} J_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}, \quad(i=1, \ldots, N)
$$

with i.i.d. Brownian motions $\left(B_{t}^{(i)}\right)_{t}$, i.i.d. IC $\left(x_{0}^{(i)}\right)$, quenched i.i.d. standard Gaussian $J_{i j}=J_{j i}$.

- Ben-Arous-D.-Guionnet (01'), show that uniformly on $[0, T]^{2}$:

$$
C_{N}(s, t)=\frac{1}{N}\left\langle\mathbf{x}_{s}, \mathbf{x}_{t}\right\rangle \xrightarrow{\text { a.s. }} C_{\infty}(s, t), \quad \text { as } \quad N \rightarrow \infty,
$$

with C_{∞} non-random, explicit, exhibiting FDT and AGING regimes (for $\beta>\beta_{c}$), as predicted by Cugliandolo-Dean (95').

Limiting dynamics: Gaussian disorder, spherical model

Soft spherical spins: consider interacting Langevin diffusions

$$
d x_{t}^{(i)}=-2 U_{\star}^{\prime}\left(\left\|\mathbf{x}_{t}\right\|^{2} / N\right) x_{t}^{(i)} d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} J_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}, \quad(i=1, \ldots, N)
$$

with i.i.d. Brownian motions $\left(B_{t}^{(i)}\right)_{t}$, i.i.d. IC $\left(x_{0}^{(i)}\right)$, quenched i.i.d. standard Gaussian $J_{i j}=J_{j i}$.

- Ben-Arous-D.-Guionnet (01'), show that uniformly on $[0, T]^{2}$:

$$
C_{N}(s, t)=\frac{1}{N}\left\langle\mathbf{x}_{s}, \mathbf{x}_{t}\right\rangle \xrightarrow{\text { a.s. }} C_{\infty}(s, t), \quad \text { as } \quad N \rightarrow \infty,
$$

with C_{∞} non-random, explicit, exhibiting FDT and AGING regimes (for $\beta>\beta_{c}$), as predicted by Cugliandolo-Dean (95').

- Degenerate case of rich picture for limit dynamics of spherical mixed-spin models (see D.-Subag (20'), BenArous-Gheissari-Jagannath (20'), for analysis of generalized CK-CHS (93') Eqn.-s).

Limiting dynamics: Gaussian disorder, spherical model

Soft spherical spins: consider interacting Langevin diffusions

$$
d x_{t}^{(i)}=-2 U_{\star}^{\prime}\left(\left\|\mathbf{x}_{t}\right\|^{2} / N\right) x_{t}^{(i)} d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} J_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}, \quad(i=1, \ldots, N)
$$

with i.i.d. Brownian motions $\left(B_{t}^{(i)}\right)_{t}$, i.i.d. IC $\left(x_{0}^{(i)}\right)$, quenched i.i.d. standard Gaussian $J_{i j}=J_{j i}$.

- Ben-Arous-D.-Guionnet (01'), show that uniformly on $[0, T]^{2}$:

$$
C_{N}(s, t)=\frac{1}{N}\left\langle\mathbf{x}_{s}, \mathbf{x}_{t}\right\rangle \xrightarrow{\text { a.s. }} C_{\infty}(s, t), \quad \text { as } \quad N \rightarrow \infty,
$$

with C_{∞} non-random, explicit, exhibiting FDT and AGING regimes (for $\beta>\beta_{c}$), as predicted by Cugliandolo-Dean (95').

- Degenerate case of rich picture for limit dynamics of spherical mixed-spin models (see D.-Subag (20'), BenArous-Gheissari-Jagannath (20'), for analysis of generalized CK-CHS (93') Eqn.-s).
- Similarly to [BG95],[G97], also in [BDG01],[DS20], etc., explicit Gaussian computations are the key.

Universality in spin glass models: static

Talagrand (06'), Gaussian disorder J, $\{ \pm 1\}^{N} ; \mathbb{S}^{N}$ valued, sk \& mixed p-spins:

$$
F_{N}(\mathrm{~J}):=N^{-1} \log \int e^{\beta H_{J}(\mathrm{x})} d \mathrm{x} \xrightarrow{\text { a.s. }} F_{\beta}, \quad \text { as } \quad N \rightarrow \infty,
$$

with non-random F_{β} given by the corresponding Parisi formula.

Easy: Concentration, $\left|F_{N}(\mathrm{~J})-\mathbb{E} F_{N}\right| \rightarrow 0$ exponentially fast in N.
Hard: Convergence of $\mathbb{E} F_{N}$. Key: Gaussian integration by part.

Universality in spin glass models: static

Talagrand (06'), Gaussian disorder J, $\{ \pm 1\}^{N} ; \mathbb{S}^{N}$ valued, sk \& mixed p-spins:

$$
F_{N}(\mathrm{~J}):=N^{-1} \log \int e^{\beta H_{J}(\mathrm{x})} d \mathrm{x} \xrightarrow{\text { a.s. }} F_{\beta}, \quad \text { as } \quad N \rightarrow \infty,
$$

with non-random F_{β} given by the corresponding Parisi formula.

Easy: Concentration, $\left|F_{N}(\mathrm{~J})-\mathbb{E} F_{N}\right| \rightarrow 0$ exponentially fast in N.
Hard: Convergence of $\mathbb{E} F_{N}$. Key: Gaussian integration by part.

Universality: Same for any $\widehat{\jmath}$ of centered product law, provided $\operatorname{Cov}\left(H_{\mathrm{\jmath}}(\mathbf{x}), H_{\mathrm{\jmath}}(\mathbf{y})\right)=\operatorname{Cov}\left(H_{\mathrm{J}}(\mathbf{x}), H_{\mathrm{J}}(\mathbf{y})\right) \quad\left[=N \xi\left(N^{-1}\langle\mathbf{x}, \mathbf{y}\rangle\right)\right]$.

Universality in spin glass models: static

Talagrand (06'), Gaussian disorder J, $\{ \pm 1\}^{N} ; \mathbb{S}^{N}$ valued, SK \& mixed p-spins:

$$
F_{N}(\mathrm{~J}):=N^{-1} \log \int e^{\beta H_{\mathrm{J}}(\mathrm{x})} d \mathrm{x} \xrightarrow{\text { a.s. }} F_{\beta}, \quad \text { as } \quad N \rightarrow \infty,
$$

with non-random F_{β} given by the corresponding Parisi formula.

Easy: Concentration, $\left|F_{N}(\mathrm{~J})-\mathbb{E} F_{N}\right| \rightarrow 0$ exponentially fast in N.
Hard: Convergence of $\mathbb{E} F_{N}$. Key: Gaussian integration by part.

Universality: Same for any $\widehat{\jmath}$ of centered product law, provided
$\operatorname{Cov}\left(H_{\mathrm{\jmath}}(\mathbf{x}), H_{\mathrm{\jmath}}(\mathbf{y})\right)=\operatorname{Cov}\left(H_{\mathrm{J}}(\mathbf{x}), H_{\mathrm{J}}(\mathbf{y})\right) \quad\left[=N \xi\left(N^{-1}\langle\mathbf{x}, \mathbf{y}\rangle\right)\right]$.

Chatterjee (05^{\prime}) [SK on $\{ \pm 1\}^{N}$]: J $\mapsto F_{N}(\mathrm{~J})$ smooth, small 3-rd derivatives,
$\Longrightarrow \quad$ Lindeberg's principle applies (alt. see Carmona-Hu (06')).

Universality for spin glass dynamics

- $\mathbf{B}_{t}, \mathbf{x}_{0}, U_{\star}$ as in [BG95], [G97], centered product laws $\widehat{\jmath}$ with covariance of J, $d x_{t}^{(i)}=-U_{\star}^{\prime}\left(x_{t}^{(i)}\right) d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} \widehat{J}_{i j} \chi_{t}^{(j)} d t+d B_{t}^{(i)}$.
(I) [DLZ19] show $\mu_{N} \xrightarrow{\text { a.s. }} \mu_{\star}$ if uniform expon. tails (UET) \& no-symmetry for $\hat{\mathrm{J}}$.

Universality for spin glass dynamics

- $\mathbf{B}_{t}, \mathbf{x}_{0}, U_{\star}$ as in [BG95], [G97], centered product laws $\widehat{\jmath}$ with covariance of J, $d x_{t}^{(i)}=-U_{\star}^{\prime}\left(x_{t}^{(i)}\right) d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} \widehat{J}_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}$.
(I) [DLZ19] show $\mu_{N} \xrightarrow{\text { ass. }} \mu_{\star}$ if uniform expo. tails (UET) \& no-symmetry for \widehat{J}.
- Diffusion as in [bDG01],
$d x_{t}^{(i)}=-2 U_{\star}^{\prime}\left(\left\|\mathbf{x}_{t}\right\|^{2} / N\right) x_{t}^{(i)} d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} \widehat{J}_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}$.
(dSK ${ }_{2}$)
(II) [DG20] show $C_{N}(s, t) \xrightarrow{\text { ass. }} C_{\infty}(s, t)$ if UET, $U_{\star}(r)=\alpha r$, symmetric \hat{J} ok.

Universality for spin glass dynamics

- $\mathbf{B}_{t}, \mathbf{x}_{0}, U_{\star}$ as in [BG95], [G97], centered product laws \widehat{J} with covariance of J, $d x_{t}^{(i)}=-U_{\star}^{\prime}\left(x_{t}^{(i)}\right) d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} \widehat{\jmath}_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}$.
(I) [DLZ19] show $\mu_{N} \xrightarrow{\text { a.s. }} \mu_{\star}$ if uniform expon. tails (UET) \& no-symmetry for $\hat{\mathrm{J}}$.
- Diffusions as in [bDg01], $d x_{t}^{(i)}=-2 U_{\star}^{\prime}\left(\left\|\mathbf{x}_{t}\right\|^{2} / N\right) x_{t}^{(i)} d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} \widehat{J}_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}$.
(II) [DG20] show $C_{N}(s, t) \xrightarrow{\text { a.s. }} C_{\infty}(s, t)$ if UET, $U_{\star}(r)=\alpha r$, symmetric $\hat{\jmath}$ ok.

Heuristic: Entry-wise CLT for $\widehat{\mathbf{G}}_{t}=N^{-1 / 2} \widehat{\mathrm{~J}}_{x_{t}}$ at reasonable, frozen \mathbf{x}_{t}.
\Longrightarrow By Lindeberg's principle replace $\widehat{\mathbf{G}}_{t}$ with $\mathbf{G}_{t}=N^{-1 / 2} \mathbf{J} \mathbf{x}_{t}$ in $\left(d s k_{1}\right)-(d s k 2)$.

Universality for spin glass dynamics

- $\mathbf{B}_{t}, \mathbf{x}_{0}, U_{\star}$ as in [BG95], [G97], centered product laws $\widehat{\jmath}$ with covariance of J, $d x_{t}^{(i)}=-U_{\star}^{\prime}\left(x_{t}^{(i)}\right) d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} \widehat{\jmath}_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}$.
(I) [DLZ19] show $\mu_{N} \xrightarrow{\text { a.s. }} \mu_{\star}$ if uniform expon. tails (UET) \& no-symmetry for $\hat{\mathrm{J}}$.
- Diffusions as in [bDg01],
$d x_{t}^{(i)}=-2 U_{\star}^{\prime}\left(\left\|\mathbf{x}_{t}\right\|^{2} / N\right) x_{t}^{(i)} d t+\frac{\beta}{\sqrt{N}} \sum_{j=1}^{N} \widehat{J}_{i j} x_{t}^{(j)} d t+d B_{t}^{(i)}$.
(II) [DG20] show $C_{N}(s, t) \xrightarrow{\text { a.s. }} C_{\infty}(s, t)$ if UET, $U_{\star}(r)=\alpha r$, symmetric $\hat{\jmath}$ ok.

Heuristic: Entry-wise CLT for $\widehat{\mathbf{G}}_{t}=N^{-1 / 2} \widehat{\mathbf{J}} \mathbf{x}_{t}$ at reasonable, frozen \mathbf{x}_{t}. \Longrightarrow By Lindeberg's principle replace $\widehat{\mathbf{G}}_{t}$ with $\mathbf{G}_{t}=N^{-1 / 2} \mathbf{J} \mathbf{x}_{t}$ in $\left(d s k_{1}\right)-(d s k 2)$.
Challenge: $\mathbf{x}_{t}=\mathbf{x}_{t}(J)$ not frozen, potentially un-reasonable, no explicit solution. $\Longrightarrow \quad$ Not clear how to control (3rd order) derivatives of $\mathbf{G}_{t}(\mathrm{~J})$, etc.

Girsanov \& Lindeberg at the large deviations [DLZ19]

Compare two $\left(d S K_{1}\right)$ diffusions of laws

$$
\begin{array}{ll}
\widehat{\mathbb{P}}_{\beta}: & d \mathbf{x}_{t}=-\operatorname{diag}\left\{U_{\star}^{\prime}\left(x_{t}^{(i)}\right)\right\} d t+\frac{\beta}{\sqrt{N}} \widehat{\jmath} \mathbf{x}_{t} d t+d \mathbf{B}_{t} . \\
\mathbb{P}_{\beta}: & d \mathbf{x}_{t}=-\operatorname{diag}\left\{U_{\star}^{\prime}\left(x_{t}^{(i)}\right)\right\} d t+\frac{\beta}{\sqrt{N}} J \mathbf{x}_{t} d t+d \mathbf{B}_{t} .
\end{array}
$$

Girsanov \& Lindeberg at the large deviations [DLZ19]

Compare two $\left(d S K_{1}\right)$ diffusions of laws

$$
\begin{array}{ll}
\widehat{\mathbb{P}}_{\beta}: & d \mathbf{x}_{t}=-\operatorname{diag}\left\{U_{\star}^{\prime}\left(x_{t}^{(i)}\right)\right\} d t+\frac{\beta}{\sqrt{N}} \widehat{\jmath} \mathbf{x}_{t} d t+d \mathbf{B}_{t} \\
\mathbb{P}_{\beta}: & d \mathbf{x}_{t}=-\operatorname{diag}\left\{U_{\star}^{\prime}\left(x_{t}^{(i)}\right)\right\} d t+\frac{\beta}{\sqrt{N}} J \mathbf{x}_{t} d t+d \mathbf{B}_{t}
\end{array}
$$

- RADON-NYKODIM: $\left(\mathbb{E}_{J} \otimes \widehat{\mathbb{P}}_{\beta}\right) \circ \mu_{N}^{-1}(A)=\mathbb{E}_{\beta}\left[e^{N \Delta_{N}} \mathbf{1}_{\left\{\mu_{N} \in A\right\}}\right]$
\Longrightarrow Just bound $\Delta_{N}=\widehat{\Gamma}_{N}-\Gamma_{N}$, for $\widehat{\Gamma}_{N}\left(\mu_{N}\right)=N^{-1} \log \mathbb{E}_{\widehat{\jmath}}\left[\left(d \widehat{\mathbb{P}}_{\beta} / d \mathbb{P}_{0}\right) \circ \mu_{N}^{-1}\right]$.

Girsanov \& Lindeberg at the large deviations [DLZ19]

Compare two $\left(d S K_{1}\right)$ diffusions of laws

$$
\begin{array}{ll}
\widehat{\mathbb{P}}_{\beta}: & d \mathbf{x}_{t}=-\operatorname{diag}\left\{U_{\star}^{\prime}\left(x_{t}^{(i)}\right)\right\} d t+\frac{\beta}{\sqrt{N}} \widehat{\jmath} \mathbf{x}_{t} d t+d \mathbf{B}_{t} \\
\mathbb{P}_{\beta}: & d \mathbf{x}_{t}=-\operatorname{diag}\left\{U_{\star}^{\prime}\left(x_{t}^{(i)}\right)\right\} d t+\frac{\beta}{\sqrt{N}} J \mathbf{x}_{t} d t+d \mathbf{B}_{t}
\end{array}
$$

- RADON-NYKODIM: $\left(\mathbb{E}_{J} \otimes \widehat{\mathbb{P}}_{\beta}\right) \circ \mu_{N}^{-1}(A)=\mathbb{E}_{\beta}\left[e^{N \Delta_{N}} \mathbf{1}_{\left\{\mu_{N} \in A\right\}}\right]$
\Longrightarrow Just bound $\Delta_{N}=\widehat{\Gamma}_{N}-\Gamma_{N}$, for $\widehat{\Gamma}_{N}\left(\mu_{N}\right)=N^{-1} \log \mathbb{E}_{\widehat{\jmath}}\left[\left(d \widehat{\mathbb{P}}_{\beta} / d \mathbb{P}_{0}\right) \circ \mu_{N}^{-1}\right]$.
- GIRSANOV and independence of rows of $\widehat{\mathrm{J}}$:
$\Longrightarrow e^{N \widehat{\Gamma}_{N}}=\prod_{i} \mathbb{E}_{\widehat{J}_{i}}\left[e^{-Q_{i}\left(\mathbf{x}, \mathbf{B}, \widehat{J}_{i}\right)}\right]$, for $Q_{i}(\cdot) \geq 0$ explicit quadratic forms in \widehat{J}_{i}.

Girsanov \& Lindeberg at the large deviations [DLz19]

Compare two $\left(d S K_{1}\right)$ diffusions of laws

$$
\begin{array}{ll}
\widehat{\mathbb{P}}_{\beta}: & d \mathbf{x}_{t}=-\operatorname{diag}\left\{U_{\star}^{\prime}\left(x_{t}^{(i)}\right)\right\} d t+\frac{\beta}{\sqrt{N}} \widehat{\jmath} \mathbf{x}_{t} d t+d \mathbf{B}_{t} . \\
\mathbb{P}_{\beta}: & d \mathbf{x}_{t}=-\operatorname{diag}\left\{U_{\star}^{\prime}\left(x_{t}^{(i)}\right)\right\} d t+\frac{\beta}{\sqrt{N}} J \mathbf{x}_{t} d t+d \mathbf{B}_{t} .
\end{array}
$$

- RADON-NYKODIM: $\left(\mathbb{E}_{J} \otimes \widehat{\mathbb{P}}_{\beta}\right) \circ \mu_{N}^{-1}(A)=\mathbb{E}_{\beta}\left[e^{N \Delta_{N}} 1_{\left\{\mu_{N} \in A\right\}}\right]$
\Longrightarrow Just bound $\Delta_{N}=\widehat{\Gamma}_{N}-\Gamma_{N}$, for $\widehat{\Gamma}_{N}\left(\mu_{N}\right)=N^{-1} \log \mathbb{E}_{\widehat{\jmath}}\left[\left(d \widehat{\mathbb{P}}_{\beta} / d \mathbb{P}_{0}\right) \circ \mu_{N}^{-1}\right]$.
- GIRSANOV and independence of rows of $\widehat{\jmath}$:
$\Longrightarrow e^{N \widehat{\Gamma}_{N}}=\prod_{i} \mathbb{E}_{\mathrm{J}_{i}}\left[e^{-Q_{i}\left(\mathbf{x}, \mathbf{B}, \widehat{J}_{i}\right)}\right]$, for $Q_{i}(\cdot) \geq 0$ explicit quadratic forms in \widehat{J}_{i}.
- LINDEBERG: $\mathbb{E}_{\widehat{J}_{i}}\left[e^{-Q_{i}}\right] \leq\left(1+\frac{1}{\sqrt{N}} e^{M_{i}}\right) \mathbb{E}_{J_{i}}\left[e^{-Q_{i}}\right]$ with $M_{i} \approx \kappa \int_{0}^{T}\left(G_{t}^{(i)}\right)^{2} d t$.
$\Longrightarrow \quad \Delta_{N} \leq \frac{1}{N} \sum_{i=1}^{N} \log \left(1+\frac{1}{\sqrt{N}} e^{M_{i}}\right)$.

Girsanov \& Lindeberg at the large deviations [DLz19]

Compare two $\left(d S K_{1}\right)$ diffusions of laws

$$
\begin{array}{ll}
\widehat{\mathbb{P}}_{\beta}: & d \mathbf{x}_{t}=-\operatorname{diag}\left\{U_{\star}^{\prime}\left(x_{t}^{(i)}\right)\right\} d t+\frac{\beta}{\sqrt{N}} \widehat{\jmath} \mathbf{x}_{t} d t+d \mathbf{B}_{t} . \\
\mathbb{P}_{\beta}: & d \mathbf{x}_{t}=-\operatorname{diag}\left\{U_{\star}^{\prime}\left(x_{t}^{(i)}\right)\right\} d t+\frac{\beta}{\sqrt{N}} J \mathbf{x}_{t} d t+d \mathbf{B}_{t} .
\end{array}
$$

- RADON-NYKODIM: $\left(\mathbb{E}_{J} \otimes \widehat{\mathbb{P}}_{\beta}\right) \circ \mu_{N}^{-1}(A)=\mathbb{E}_{\beta}\left[e^{N \Delta_{N}} 1_{\left\{\mu_{N} \in A\right\}}\right]$
\Longrightarrow Just bound $\Delta_{N}=\widehat{\Gamma}_{N}-\Gamma_{N}$, for $\widehat{\Gamma}_{N}\left(\mu_{N}\right)=N^{-1} \log \mathbb{E}_{\widehat{\jmath}}\left[\left(d \widehat{\mathbb{P}}_{\beta} / d \mathbb{P}_{0}\right) \circ \mu_{N}^{-1}\right]$.
- GIRSANOV and independence of rows of $\widehat{\jmath}$:
$\Longrightarrow e^{N \widehat{\Gamma}_{N}}=\prod_{i} \mathbb{E}_{\mathrm{J}_{i}}\left[e^{-Q_{i}\left(\mathbf{x}, \mathbf{B}, \widehat{J}_{i}\right)}\right]$, for $Q_{i}(\cdot) \geq 0$ explicit quadratic forms in \widehat{J}_{i}.
- LINDEBERG: $\mathbb{E}_{\widehat{J}_{i}}\left[e^{-Q_{i}}\right] \leq\left(1+\frac{1}{\sqrt{N}} e^{M_{i}}\right) \mathbb{E}_{J_{i}}\left[e^{-Q_{i}}\right]$ with $M_{i} \approx \kappa \int_{0}^{T}\left(G_{t}^{(i)}\right)^{2} d t$.
$\Longrightarrow \quad \Delta_{N} \leq \frac{1}{N} \sum_{i=1}^{N} \log \left(1+\frac{1}{\sqrt{N}} e^{M_{i}}\right)$.
Challenge (LD): Typically $M_{i}=O(1)$, but may be $O(N)$.
- Discretization \& RMT: $\sum_{i} \widehat{\mathbb{P}}_{\beta}\left(\sum_{i} M_{i} \mathbf{1}_{\left\{M_{i} \geq r_{N}\right\}} \geq \eta N\right)$ finite, $\forall \eta>0, r_{N} \rightarrow \infty$.

Stochastic Taylor expansion [DG20]

Denote by $\mathrm{P}_{t}^{(\mathrm{J})}$ the Markov semi-group of $\left(d s k_{2}\right)$ at $U_{\star}(r)=\alpha r$:
$d \mathbf{x}_{t}=-2 \alpha \mathbf{x}_{t} d t+\widehat{\mathbf{G}}_{t} d t+d \mathbf{B}_{t}, \quad \widehat{\mathbf{G}}_{t}=\frac{\beta}{\sqrt{N}} \widehat{\jmath} \mathbf{x}_{t}, \quad \mathbf{x}_{0} \sim \mu_{0}, \quad \mu_{0}$ a product law.

Stochastic Taylor expansion [DG20]

Denote by $\mathrm{P}_{t}^{(\mathrm{J})}$ the Markov semi-group of $\left(d s k_{2}\right)$ at $U_{\star}(r)=\alpha r$:
$d \mathbf{x}_{t}=-2 \alpha \mathbf{x}_{t} d t+\widehat{\mathbf{G}}_{t} d t+d \mathbf{B}_{t}, \quad \widehat{\mathbf{G}}_{t}=\frac{\beta}{\sqrt{N}} \widehat{\mathbf{x}} \mathbf{x}_{t}, \quad \mathbf{x}_{0} \sim \mu_{0}, \quad \mu_{0}$ a product law.
Concentration for $f\left(\widehat{J}, \mathbf{B}, \mathbf{x}_{0}\right)$, ex. $\mathbf{x}_{0}, \widehat{\jmath}$ satisfy POINCÁRE, $f(\cdot)$ is LiP.
\Longrightarrow Just show $\left|\mathbb{E}_{J}\left[\left\langle\mathrm{P}_{t}^{(J)} f, \mu_{0}\right\rangle\right]-\mathbb{E}_{\jmath}\left[\left\langle\mathrm{P}_{t}^{(\mathrm{J})} f, \mu_{0}\right\rangle\right]\right| \rightarrow 0$ for $N \rightarrow \infty$.

Stochastic Taylor expansion [DG20]

Denote by $\mathrm{P}_{t}^{(\mathrm{J})}$ the Markov semi-group of $\left(d s k_{2}\right)$ at $U_{\star}(r)=\alpha r$:
$d \mathbf{x}_{t}=-2 \alpha \mathbf{x}_{t} d t+\widehat{\mathbf{G}}_{t} d t+d \mathbf{B}_{t}, \quad \widehat{\mathbf{G}}_{t}=\frac{\beta}{\sqrt{N}} \widehat{\jmath} \mathbf{x}_{t}, \quad \mathbf{x}_{0} \sim \mu_{0}, \quad \mu_{0}$ a product law.
Concentration for $f\left(\widehat{J}, \mathbf{B}, \mathbf{x}_{0}\right)$, ex. $\mathbf{x}_{0}, \widehat{\jmath}$ satisfy POINCÁRE, $f(\cdot)$ is LiP.
\Longrightarrow Just show $\left|\mathbb{E}_{J}\left[\left\langle\mathrm{P}_{t}^{(J)} f, \mu_{0}\right\rangle\right]-\mathbb{E}_{\jmath}\left[\left\langle\mathrm{P}_{t}^{(\mathrm{J})} f, \mu_{0}\right\rangle\right]\right| \rightarrow 0$ for $N \rightarrow \infty$.
After stochastic Taylor expansion

$$
\left\langle\mathrm{P}_{t}^{(\mathrm{J})} f, \mu_{0}\right\rangle=\sum_{k \geq 0} \frac{t^{k}}{k!}\left\langle\left(L^{(\widehat{\jmath})}\right)^{k} f, \mu_{0}\right\rangle,
$$

suffices to show that as $N \rightarrow \infty$,

$$
\sum_{k \geq 0} \frac{T^{k}}{k!}\left|\mathbb{E}_{\mathrm{J}}\left[\left\langle\left(L^{(J)}\right)^{k} f, \mu_{0}\right\rangle\right]-\mathbb{E}_{\widehat{\jmath}}\left[\left\langle\left(L^{(J)}\right)^{k} f, \mu_{0}\right\rangle\right]\right| \rightarrow 0
$$

Stochastic Taylor expansion [DG20]

Denote by $\mathrm{P}_{t}^{(\hat{J})}$ the Markov semi-group of $\left(d s k_{2}\right)$ at $U_{\star}(r)=\alpha r$: $d \mathbf{x}_{t}=-2 \alpha \mathbf{x}_{t} d t+\widehat{\mathbf{G}}_{t} d t+d \mathbf{B}_{t}, \quad \widehat{\mathbf{G}}_{t}=\frac{\beta}{\sqrt{N}} \widehat{\jmath} \mathbf{x}_{t}, \quad \mathbf{x}_{0} \sim \mu_{0}, \quad \mu_{0}$ a product law. Concentration for $f\left(\widehat{J}, \mathbf{B}, \mathbf{x}_{0}\right)$, ex. $\mathbf{x}_{0}, \widehat{J}$ satisfy POincáre, $f(\cdot)$ is LiP.

$$
\Longrightarrow \quad \text { Just show } \quad\left|\mathbb{E}_{J}\left[\left\langle\mathrm{P}_{t}^{(J)} f, \mu_{0}\right\rangle\right]-\mathbb{E}_{\jmath}\left[\left\langle\mathrm{P}_{t}^{(\mathrm{J})} f, \mu_{0}\right\rangle\right]\right| \rightarrow 0 \text { for } N \rightarrow \infty
$$

After stochastic Taylor expansion

$$
\left\langle\mathrm{P}_{t}^{(\mathrm{J})} f, \mu_{0}\right\rangle=\sum_{k \geq 0} \frac{t^{k}}{k!}\left\langle\left(L^{(\widehat{\jmath})}\right)^{k} f, \mu_{0}\right\rangle,
$$

suffices to show that as $N \rightarrow \infty$,

$$
\sum_{k \geq 0} \frac{T^{k}}{k!}\left|\mathbb{E}_{\jmath}\left[\left\langle\left(L^{(J)}\right)^{k} f, \mu_{0}\right\rangle\right]-\mathbb{E}_{\jmath}\left[\left\langle\left(L^{(\mathrm{J})}\right)^{k} f, \mu_{0}\right\rangle\right]\right| \rightarrow 0
$$

$L^{(J)}=\frac{\beta}{\sqrt{N}} \sum_{i j} J_{j i} x_{i} \partial_{j}-2 \alpha \sum_{j} x_{j} \partial_{j}+\sum_{j} \partial_{j j}$, so monomial $f(\mathrm{~J}, \mathbf{x})=\mathrm{J}_{\gamma} \mathbf{x}_{\sigma}$ yields $\left(L^{(J)}\right)^{k} f$ a sum of monomials: $|\boldsymbol{\sigma}|$ non-increasing, contribution to (\star) only if all multiplicities in $\gamma \cup \widetilde{\gamma}$ are ≥ 2, with one such ≥ 3.

Stochastic Taylor expansion [DG20]

Denote by $\mathrm{P}_{t}^{(\mathrm{J})}$ the Markov semi-group of $\left(d s k_{2}\right)$ at $U_{\star}(r)=\alpha r$: $d \mathbf{x}_{t}=-2 \alpha \mathbf{x}_{t} d t+\widehat{\mathbf{G}}_{t} d t+d \mathbf{B}_{t}, \quad \widehat{\mathbf{G}}_{t}=\frac{\beta}{\sqrt{N}} \widehat{\jmath} \mathbf{x}_{t}, \quad \mathbf{x}_{0} \sim \mu_{0}, \quad \mu_{0}$ a product law. Concentration for $f\left(\widehat{J}, \mathbf{B}, \mathbf{x}_{0}\right)$, ex. $\mathbf{x}_{0}, \widehat{J}$ satisfy POincáre, $f(\cdot)$ is LiP.

$$
\Longrightarrow \quad \text { Just show } \quad\left|\mathbb{E}_{J}\left[\left\langle\mathrm{P}_{t}^{(J)} f, \mu_{0}\right\rangle\right]-\mathbb{E}_{\jmath}\left[\left\langle\mathrm{P}_{t}^{(\mathrm{J})} f, \mu_{0}\right\rangle\right]\right| \rightarrow 0 \text { for } N \rightarrow \infty
$$

After stochastic Taylor expansion

$$
\left\langle\mathrm{P}_{t}^{(\mathrm{J})} f, \mu_{0}\right\rangle=\sum_{k \geq 0} \frac{t^{k}}{k!}\left\langle\left(L^{(\widehat{\jmath})}\right)^{k} f, \mu_{0}\right\rangle,
$$

suffices to show that as $N \rightarrow \infty$,

$$
\sum_{k \geq 0} \frac{T^{k}}{k!}\left|\mathbb{E}_{\jmath}\left[\left\langle\left(L^{(J)}\right)^{k} f, \mu_{0}\right\rangle\right]-\mathbb{E}_{\jmath}\left[\left\langle\left(L^{(\mathrm{J})}\right)^{k} f, \mu_{0}\right\rangle\right]\right| \rightarrow 0
$$

$L^{(J)}=\frac{\beta}{\sqrt{N}} \sum_{i j} J_{j i} x_{i} \partial_{j}-2 \alpha \sum_{j} x_{j} \partial_{j}+\sum_{j} \partial_{j j}$, so monomial $f(\mathrm{~J}, \mathbf{x})=\mathrm{J}_{\gamma} \mathbf{x}_{\sigma}$ yields $\left(L^{(J)}\right)^{k} f$ a sum of monomials: $|\boldsymbol{\sigma}|$ non-increasing, contribution to (\star) only if all multiplicities in $\gamma \cup \widetilde{\gamma}$ are ≥ 2, with one such ≥ 3. Combinatorics: negligible!.

Thank you!

