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Motivation: spin-glass models, Langevin dynamics

Limiting dynamics: Gaussian disorder

Universality: the challenge for dynamics

Combining Girsanov and Lindeberg (w. Lubetzky & Zeitouni)

Stochastic Taylor expansion (w. Gheissari)
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Random Gibbs measures on RV at inverse temperature 8 > 0,
vh 3(A) = o / P =200 gy | ACR",
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with random Hj : RY — R and normalizing constant Zs j = [ e?M)=2U0gx.
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Random Gibbs measures on RV at inverse temperature 8 > 0,
vh 3(A) = o / P =200 gy | ACR",
A

with random Hj : RY — R and normalizing constant Zs j = [ e?M)=2U0gx.
Potential U(x) tunes the support (e.g. near the hypercube {+1}" c S").

Mixed p-spin models: Hj a centered Gaussian function
Cov (Hy(x), Hi(y)) = NE(N7H{x,y)) =Y byr
p<m
m = 2 is Sherrington-Kirpatrick (Sk) model; ||x||*> = (x,x), Euclidean norm.
Spin-glasses (on {£1}"), are toy models of diluted magnetic systems with

random interactions (examples of disordered mean-field models).
Spherical (on SV), often serving as further (mathematical) simplification.

Much recent progress in understanding the asymptotic N — co of VQ',J(~)
starting with F5 = lim N™!log Zs; (Talagrand (06’), Panchenko (13'), ...).
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Langevin particles x; = (xt(i))1§;§/\/ € R", solution of diffusion
dx; = BV Hy(x¢)dt — VU(x¢)dt + dB;

where B; = (Bt(i))lsfg,\, is N-dimensional Brownian motion.

Langevin dynamics is invariant for (random) Gibbs measure

v 3(A) = Z;5 / 2BHI=200) gy AcRY.
A

SK model: VH;(x) = \%NJ x, J symmetric of i.i.d. standard Gaussian entries.

Soft binary spins: U(x) = 3, U« (x\"),
U.(r) = oo outside (—s,5), minimal at r = +1 (supported near {+1}").

For xo of i.i.d. entries, the (soft binary sk, Langevin) diffusion
8 N
dx) = —U.(x{")dt + T=>" Jyxdt + dBY
t ( t ) N = Uit t

predicted to have exponential in N relaxation time when 5> 1
—> Experiments can only observe the system out of equilibrium.
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i = NZ5 € a6,(C ([0, T1)),

for U.(r) — oo as |r| — s, denoting by Ps the law of interacting diffusions

dx) = — UL (x{ )dt+£ZJUxt dt+dB", (i=1,...,N),
\F
with i.i.d. Brownian motions (B"),, i.i.d. x$7 initial conditions (1c),

and frozen (quenched), i.i.d. standard Gaussian Jj;.

BenArous-Guionnet (95’), Guionnet (97") (symmetric J): as N — oo
un 23 py law of self-consistent non-Markovian single-spin diffusion.
(predicted by Cristiani-Sampolinski (87"); [cs87] and

Hertz et. al (87’) also propose non-symmetric J for neural networks).

Key: Explicit Gaussian computation of My(un) = N~ ' log Es[(dPs/dPo) o pupy']
= LDP for uy under Ej ® Pg, with rate /(u) =0 < p = ., yielding the LLN.
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Limiting dynamics: Gaussian disorder, spherical model

Soft spherical spins: consider interacting Langevin diffusions

dx) = —2UL(Ixel?/N)xdt + —— ZJ,,xt dt+dB", (i=1,...,N),
\F

with i.i.d. Brownian motions (BS )e, i.id. 1C (xéi)), quenched i.i.d. standard
Gaussian J; = Jji.

o Ben-Arous-D.-Guionnet (01'), show that uniformly on [0, T]?

%(x&xt) 2% Co(s,t), as N — oo,
with Coo non-random, explicit, exhibiting FDT and AGING regimes
(for B > Bc), as predicted by Cugliandolo-Dean (95').

CN(S, t) =

e Degenerate case of rich picture for limit dynamics of spherical mixed-spin
models (see D.-Subag (20'), BenArous-Gheissari-Jagannath (20),
for analysis of generalized ck-cHS (93') Eqn.-s).

e Similarly to [BG95],[G97], also in [BDGO1],[DS20], etc., explicit Gaussian
computations are the key.
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Talagrand (06'), Gaussian disorder J, {#1}";S" valued, sk & mixed p-spins:
Fn(J) = N1 Iog/eﬁHJ(x)dx 22 Fs, as N— oo,

with non-random Fg given by the corresponding Parisi formula.

Easy: Concentration,

Fn(J) — EFy| — O exponentially fast in .

Hard: Convergence of EFy. Key: Gaussian integration by part.

Universality: Same for any J of centered product law, provided
Cov (H;(x), Hi(y)) = Cov(Hi(x), Hi(y)) [= NE(NTH(x,y))].

Chatterjee (05') [sk on {£1}"]: J+— Fy(J) smooth, small 3-rd derivatives,

—> Lindeberg's principle applies (alt. see Carmona-Hu (06')).
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(1) [pLz19] show py =3 p. if uniform expon. tails (UET) & no-symmetry for J.

e Diffusions as in [BDGO1],
i

(1) [DG20] show C(s, t) 25 Cao(s, t) if UET, U,(r) = ar, symmetric J ok.

dx = 20U (||xe)|?/N)xD de+ Ddt+dB{ . (dSK>)

HMZ

Heuristic: Entry-wise CLT for G, = N™'/2Jx, at reasonable, frozen x;.
= By Lindeberg’s principle replace E;t with G = N™Y2Jx, in (dski1)-(dsk?2).

Challenge: x; = x¢(J) not frozen, potentially un-reasonable, no explicit solution.
= Not clear how to control (3rd order) derivatives of G¢(J), etc.
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Compare two (dSK1) diffusions of laws

Ps:  dxe = —diag{UL(x")}dt + %jxtdt + dB; .
Ps:  dxe = —diag{U.(x'")}dt + %thdt + dB;.

e RADON-NYKODIM: (Ej ® Pg) o uyt(A) = Eg[e"2V1(, cay]
— Just bound Ay =Ty — T, for Tn(un) = N~ log E;[(dPs/dPo) o uyt].

e CIRSANOV and independence of rows of J:
— "W = [[,E; [e"¥™BI)], for Qi(-) > 0 explicit quadratic forms in J;.

e LINDEBERG: Ej [e"¥]<(1+ ﬁer)EJ,.[e*Q"] with M; =~ HfOT(Gt(i))Zdt.
= An< %Z,N:l log(1 + ﬁe’w").

Challenge (LD): Typically M; = O(1), but may be O(N).
o Discretization & rmT: 7. Ps(D; Milyy,>ry = nN) finite, Vi > 0, ry — oo.
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After stochastic Taylor expansion
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<P£J)fa ,LLO> = Z F«L(J))kfv M0> )
k>0
suffices to show that as N — oo,
Tk _
S D), o] — Bl (L), o] = 0. (*)

k>0

LY = % 22 Jixi0p — 2a 37, X0 + 3 0y, so monomial f(J,x) = Jyxo yields
(LYY F a sum of monomials: || non-increasing, contribution to (%) only if all
multiplicities in v U~ are > 2, with one such > 3. Combinatorics: negligible!.



Thank you!
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